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ABSTRACT

This paper presents the results of a regionalization study of the precipitation climate of the western
United States using principal component analysis. Past eigen-based regionalization studies have relied on
rain gauge networks, which is restrictive because rain gauge coverage is sparse, especially over complex
terrain that exists in the western United States. Here, the use of alternate data products is examined by
conducting a comparative regionalization using nine precipitation datasets used in hydrometeorological
research. Five unique precipitation climates are identified within the western United States, which have
centers and boundaries that are physically reasonable and that highlight the relationship between the
precipitation climatology and local topography. Using the congruence coefficient as the measure of simi-
larity between principal component solutions, the method is found to be generally stable across datasets.
The exception is the National Centers for Environmental Prediction–Department of Energy (NCEP–DOE)
Reanalysis 2, which frequently demonstrates only borderline agreement with the other datasets. The load-
ing pattern differences among datasets are shown to be primarily a result of data differences in the
representation of (i) precipitation over the Rocky Mountains, (ii) the eastward wet-to-dry precipitation
gradient that occurs during the cold season, (iii) the magnitude and spatial extent of the North American
monsoon signal, and (iv) precipitation in the desert southwest during spring and summer. Sensitivity tests
were conducted to determine whether the spatial resolution and temporal domain of the input data would
dramatically affect the solution, and these results show the methodology to be stable to differences in
spatial/temporal data features. The results suggest that alternate data products can be used in regionaliza-
tion studies, which has applications for rain gauge installation and planning, climate research, and numerical
modeling experiments.

1. Introduction

The western United States is a complex landscape
consisting of coastal zones, mountains, basins, and pla-
teaus. Its precipitation climatology is diverse as a result
of interactions between orography and atmospheric dy-
namical processes occurring on multiple temporal and
spatial scales. Competing climate controls and local dif-
ferences in terrain and proximity to coastal moisture
sources are such that unique precipitation climates are
found within relatively short spatial distances (Mock
1996). This can be challenging for climate modeling
because localities in close proximity may respond dif-

ferently not only to real climate features but also to
model errors. For example, model weaknesses associ-
ated with convection parameterizations will likely cause
more error for the parts of the domain experiencing
convective thunderstorm activity, whereas the failure to
adequately resolve topography will be a greater prob-
lem for regions exhibiting complex terrain. As such, the
systematic analysis of simulation results for each unique
precipitation climate in the western United States is
likely to lend insight into model strengths and weak-
nesses as well as into the study of local weather or
climate characteristics or land-atmosphere feedback.

A useful approach for regionalizing a spatial domain
into subdomains based on local precipitation climatol-
ogy is principal component analysis (PCA). Many stud-
ies have used PCA and related eigen techniques to
identify patterns of precipitation covariability and
isolated regions that are spatially cohesive with respect
to their precipitation regimes (e.g., Beaudoin and
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Rousselle 1982; Richman and Lamb 1985; Ehrendorfer
1987; Richman and Lamb 1987; White et al. 1991;
Carter and Elsner 1997; Comrie and Glenn 1998;
Hawkins et al. 2002; Dinpashoh et al. 2004; Gutzler
2004; Diem 2006; Diem and Brown 2006; Gochis et al.
2006). The regions identified by PCA have been used
for many purposes such as identifying persistent pat-
terns of thunderstorm activity (Easterling 1990), devel-
oping a statistical rainfall forecasting model (Carter and
Elsner 1997), linking synoptic-scale circulation patterns
to precipitation anomalies (Diem 2006), developing an
index of North American monsoon (NAM) variability
(Gutzler 2004), identifying snow–NAM teleconnections
(Ellis and Hawkins 2001; Hawkins et al. 2002), eluci-
dating atmosphere–rainfall relationships (Diem and
Brown 2006), and many others.

However, past PCA-based regionalization studies
have relied on rain gauge networks, which limit the
utility of the method because many parts of the world
are covered sparsely by, or are void of, these networks.
Additionally, for the western United States with its
complex terrain, rain gauge coverage tends to be clus-
tered in the low elevations, whereas coverage in oro-
graphic zones is sparse. Given that numerous datasets
are available for the western United States, including
satellite data and reanalysis, it is not clear a priori
whether rain gauge data would yield the most repre-
sentative results in a regionalization study. Addition-
ally, the ability to extend a study domain beyond land
areas using global products would be useful for numeri-
cal modeling studies because these areas often include
an oceanic region. However, all precipitation products
contain errors and many are available at a coarse spa-
tial resolution on the order of 2.5° � 2.5°, and it is not
clear whether this coarse resolution would affect the
regionalization results. Therefore, this study investi-
gates the utility of alternate data products for region-
alization studies by conducting a comparative regional-
ization of the precipitation climate of the western
United States using several observation-based precipi-
tation datasets.

There are several sources of precipitation data cur-
rently available for the western United States, including
measurements from rain gauges, ground-based radar,
Earth-orbiting satellites, and reanalysis products. In
general, rain gauge data are considered to be the most
accurate where they are available, but coverage over
mountain regions is sparse and rain gauge data are ad-
ditionally known to suffer low bias as a result of wind
and evaporation (e.g., Legates and Willmott 1990).
Ground Doppler radar estimates are available at a rela-
tively high spatial/temporal resolution over much of the
central and eastern United States, but mountainous ter-

rain interferes with low-level radar scans, making
Doppler precipitation estimates in the western United
States problematic (Serafin and Wilson 2000; Maddox
et al. 2002). Error in radar estimates also occurs from
brightband effects and algorithm misinterpretation of
ground clutter (e.g., Klazura et al. 1999). Satellite mea-
surements offer the advantage of increased spatial cov-
erage, including over mountains. Geosynchronous in-
frared (geo-IR) platforms provide near-complete spa-
tial coverage equatorward of 40°. However, IR-based
precipitation estimates are based on cloud-top bright-
ness temperatures, which have only a limited empirical
relationship with surface precipitation (Arkin and
Meisner 1987; Arkin and Xie 1994). Microwave esti-
mates from polar-orbiting satellites are more physically
based but have a poor temporal sampling rate of one or
two observations per day (Adler et al. 1993) for a given
location. Additionally, microwave-scattering algo-
rithms do not function over snow- or ice-covered sur-
faces (Xie and Arkin 1997), which limits their use for
some northern and high-elevation areas. Merged
datasets attempt to retain the desirable spatial/tempo-
ral features of the geo-IR datasets while drawing data
from other sources for calibration purposes or to fill in
data gaps to improve the accuracy of the overall com-
bined dataset (e.g., Xie and Arkin 1997; Adler et al.
2003). The accuracy of these merged products, how-
ever, is affected by the shortcomings of the raw input
data and by the merging methodology (e.g., Gruber et
al. 2000; Adler et al. 2001; Chen et al. 2002; Yin et al.
2004). Global and regional reanalysis products assimi-
late observations of atmospheric and ocean data and
use a numerical model to generate precipitation fields.
However, the accuracy of these fields is heavily influ-
enced by the performance of the model and its subgrid-
scale parameterizations (Kistler et al. 2001), including
those for cumulus convection, which do not perform
optimally in complex terrain.

For this precipitation regionalization and climatology
study, we consider the bulk of the observation-based
precipitation data products that are available for mod-
erately long-term (�15 yr) climatology studies of the
western United States. The datasets included in the
study are the (i) Global Precipitation Climatology Cen-
ter (GPCC) monitoring product; (ii) Global Precipita-
tion Climatology Project (GPCP) Combined Precipita-
tion Dataset, version 2; (iii) Climate Prediction Center
(CPC) Merged Analysis of Precipitation (CMAP); (iv)
CPC retrospective United States and Mexico daily pre-
cipitation analysis (USMex); (v) Precipitation-elevation
Regressions on Independent Slopes Model (PRISM);
(vi) National Centers for Environmental Prediction–
Department of Energy (NCEP–DOE) Reanalysis 2
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(NCEP-2); (vii) North American Regional Reanalysis
(NARR); (viii) Variable Infiltration Capacity (VIC)
Retrospective Land Surface Dataset; and (ix) Global
Meteorological Forcing Dataset (GMFD) for land sur-
face modeling. First, we conduct a series of PCAs using
each of the nine datasets rescaled to a common 2.5° �
2.5° grid and quantitatively compare their loading pat-
terns. Next, we regionalize the domain based on the
relative strength of gridcell loadings for each dataset,
and then we compare the results for the different
datasets and physically interpret any differences in the
initial precipitation data. Finally, we test the stability of
the method to differences in spatial/temporal data fea-
tures. Section 2 describes the datasets and section 3
discusses rescaling. Section 4 describes the methodol-
ogy of the PCA and regionalization. Section 5 contains
a discussion of the results. Conclusions are given in
section 6.

2. Data

The nine datasets included in this study and their
spatial/temporal characteristics are shown in Table 1. A
brief description is provided below.

a. Global Precipitation Climatology Center
monitoring product

The GPCC monitoring product provides monthly
precipitation data from 1986 for global land areas based
on rain gauge data from approximately 7500 stations
(Fuchs et al. 2007). Its source data are surface synoptic
weather reports (SYNOP) and monthly climate bulle-

tins (CLIMAT), which are quality controlled by auto-
mated and manual processes (Rudolf et al. 1994). The
SYNOP provide information on precipitation totals for
time intervals ranging from 1 to 24 h. Incomplete
monthly time series are not uncommon and can result
in local monthly precipitation estimates that are based
on less than optimal temporal information (Rudolf et
al. 1994; Rudolf and Schneider 2005). Following the
quality-control (QC) processes, a precipitation value is
assigned to a location based on source reliability infor-
mation. The data are interpolated to a 0.5° � 0.5° grid
and spatially averaged over 2.5° � 2.5° (Rudolf et al.
1994; Rudolf and Schneider 2005).

b. Global Precipitation Climatology Project
Combined Precipitation Dataset, version 2

The GPCP (Adler et al. 2003) is a global, merged
satellite-gauge data product that is available monthly
from 1979 at a 2.5° � 2.5° spatial resolution. The com-
bination method uses a multistep process in which
lesser-biased data sources are used to calibrate higher-
biased sources to reduce the overall bias of the end
product. For latitudes spanning 40° north–south, pre-
cipitation estimates from the IR-based Geostationary
Operational Environmental Satellite (GOES) precipi-
tation index (GPI; Arkin and Meisner 1987) are com-
pared with Special Sensor Microwave Imager (SSM/I)
data when both are simultaneously available. The GPI–
SSM/I bias is calculated and used to calibrate the GPI
precipitation estimates everywhere. Poleward of 40°,
the satellite component is a combination of SSM/I and
Television and Infrared Observation Satellite (TIROS)

TABLE 1. Main characteristics of the datasets included in this study.

Dataset Spatial resolution Temporal domain Data source

GPCCa 2.5° � 2.5° From 1986 Rain gauge
GPCPb 2.5° � 2.5° From 1979 Rain gauge, satellite
CMAPc 2.5° � 2.5° From 1979 Rain gauge, satellite
NCEP2d 210 km � 210 km From 1979 Reanalysis
GMFDe 1° � 1° 1948–2000 Reanalysis, rain gauge, satellite
USMexf 1° � 1° From 1948 Rain gauge
NARRg 32 km � 32 km From 1979 Reanalysis
VICh 1/8° � 1/8° 1950–2000 Rain gauge with orographic adjustment
PRISMi 4 km � 4 km From 1890 Rain gauge with orographic adjustment

a Global Precipitation Climatology Center monitoring product
b Global Precipitation Climatology Project Combined Precipitation Dataset, version 2
c Climate Prediction Center Merged Analysis of Precipitation
d National Centers for Environmental Prediction–Department of Energy Reanalysis 2
e Global Meteorological Forcing Dataset for land surface modeling
f Climate Prediction Center retrospective United States and Mexico daily precipitation analysis
g North American Regional Reanalysis
h Variable Infiltration Capacity Retrospective Land Surface Dataset
i Parameter-elevation Regressions on Independent Slopes Model
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Operational Vertical Sounder (TOVS) data. The mul-
tisatellite data are adjusted to agree with large-scale
(5 � 5 grid cells each at 2.5°) averages of rain gauge
data to reduce satellite bias. The corrected satellite data
are then merged with rain gauge data using inverse
error weighting to incorporate gauge-measured local
variability (Huffman et al. 1997). Beginning in 1986, the
gauge component of the GPCP is the GPCC monitor-
ing product (section 2a), which is corrected for system-
atic rain gauge error using Legates and Willmott
(1990). In the pre-SSM/I period (before July 1987), sat-
ellite estimates are from the outgoing longwave radia-
tion precipitation index (Xie and Arkin 1998).

c. Climate Prediction Center Merged Analysis of
Precipitation

The CMAP (Xie and Arkin 1996) is a monthly prod-
uct that is available from 1979 at a 2.5° � 2.5° resolu-
tion. It combines precipitation estimates from satellite
IR, SSM/I, and Microwave Sounding Unit (MSU) with
rain gauge data in two steps. The first step is to reduce
random error, and the second step is to reduce bias.
Over land, the first step uses inverse (random) error
variance weighting to combine the satellite products,
which estimates the random error from large-scale av-
erages of rain gauge data. The second step merges the
combined satellite data with rain gauge data to reduce
overall bias. Using the blending algorithm of Reynolds
(1988), the combined product is assumed equal to rain
gauge data for those grid areas having adequate cover-
age, whereas other values are calculated by solving a
form of the Poisson equation. The result is that the
satellite product determines the precipitation pattern,
and the rain gauge data constrains the amplitude. From
1986, the rain gauge component is the GPCC monitor-
ing product (section 2a).

d. CPC retrospective U.S. and Mexico daily
precipitation analysis

The USMex is a gridded rain gauge product available
at a 1° � 1° resolution from 1948. The U.S. data are
based on the CPC Unified Raingauge Data (URD;
Higgins et al. 2000), which are composed of (i) the daily
CPC Cooperative (COOP) dataset (�7000 rain gauges
from 1992), (ii) the National Climatic Data Center
(NCDC) COOP dataset (�8000 rain gauges from
1948), and (iii) the hourly precipitation dataset as de-
scribed in Higgins et al. (1996; �2500 rain gauges from
1948). Accounting for overlap between networks, the
URD typically represents 13 000–15 000 daily rain
gauge sites; however, prior to 1992 the number of rain
gauges approaches 8000. The Mexican data are based

on approximately 200 rain gauges prior to 1990 and 600
rain gauges thereafter. The data are quality controlled
for duplicate and extreme values and bias corrected for
spurious zero measurements against collocated ground
radar data. The gridding of the data uses a modified
Cressman scheme (Cressman 1959). Although there is
likely some overlap between this USMex rain gauge
data product and the GPCC monitoring product de-
scribed above, the GPCC data contains only a fraction
of the information contained in the USMex dataset
(i.e., 7500 rain gauges globally for the GPCC data ver-
sus 13 000–15 000 in the United States for the USMex
data). These datasets also differ in their interpolation
methods, and interpolation alone has been shown to
affect both correlation and bias with respect to actual
point measurements (Chen et al. 2002).

e. Precipitation-elevation Regressions on
Independent Slopes Model

PRISM is an analytical model that uses point source
precipitation observations together with a digital eleva-
tion model (DEM) to provide gridded precipitation
data products for the United States (Daly et al. 1994).
The development of PRISM was motivated by the need
for precipitation data over elevated terrain where rain
gauge data are sparse. It attempts to resolve some im-
portant problems associated with other orographic in-
terpolation methods, which rely heavily on neighboring
observations to approximate data-void localities even
though neighboring sites may exhibit important oro-
graphic differences. The PRISM methodology is i) to
use a DEM to estimate the elevation of each available
gauge station, and ii) to group stations according to
their orographic commonality (or “facet”) with respect
to orographic features such as elevation, face orienta-
tion, slope, and proximity to coasts. Precipitation at a
given DEM cell is estimated using a regression of pre-
cipitation versus elevation, where the stations sharing
the same facet as the grid cell of interest are used to
determine the parameters of the regression. The pri-
mary point source estimates used as input to PRISM
are from the NCDC Historical Climate Network
(�1200 stations), CPC COOP (�8000 stations), and
Natural Resources Conservation Service snowpack te-
lemetry (SNOTEL) data (�730 sites). PRISM data are
available from 1890 as monthly or annual averages with
a spatial resolution of 32 � 32 km2.

f. NCEP–DOE Reanalysis 2

NCEP-2 (Kanamitsu et al. 2002) is a global data
product created from a spectral data assimilation sys-
tem that merges observations from many sources.
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These include rawinsondes for upper air variables, sat-
ellites for vertical temperature soundings and cloud
drift winds, aircraft for wind and temperature, ocean
reports of surface variables, synoptic weather reports
over land, and pentad CMAP data as a precipitation
correction to improve soil moisture fields (Kalnay et al.
1996; Kanamitsu et al. 2002). Following extensive QC,
the data are assimilated using a T62 (�210 km) global
spectral model, which has 28 vertical levels and includes
parameterizations of the major physical processes such
as convection, large-scale precipitation, boundary layer
physics, and so on. The assimilation process generates
additional variables that are derived from observed
fields. These derived variables (class C) include clouds,
surface fluxes, and precipitation. Their reliability is
heavily dependent on the performance of the model
and its parameterizations (Kistler et al. 2001). The
NCEP-2 data are available in 6-h increments from 1979.

g. North American Regional Reanalysis

NARR (Mesinger et al. 2006) is an atmospheric and
hydrology dataset covering North America. NARR
uses the regional Eta Model (forced at its lateral
boundaries by NCEP-2) to assimilate observations in a
similar manner used for global reanalysis products. In
addition to a higher spatial (32 � 32 km2 with 45 levels)
and temporal (3 hourly) resolution as compared to
global reanalysis, NARR uses additional and improved
input data and contains a better representation of land
surface hydrology and land–atmosphere interactions. A
particular improvement is the assimilation of observed
precipitation. NARR uses precipitation observations to
correct atmospheric moisture and energy fields, which
subsequently leads to improvements in the model-
derived precipitation fields. NARR data are available
from 1979.

h. Variable Infiltration Capacity Retrospective
Land Surface Dataset

The VIC land surface dataset is based on 50-yr
(1950–2000) simulations with the VIC land surface hy-
drology model. The simulations were designed to pro-
vide a high-resolution (3 hourly and 1/8° � 1/8°) dataset
of land surface states and fluxes for the continental
United States and for parts of Canada and Mexico
(Maurer et al. 2002). The model includes a soil–
vegetation–atmosphere transfer scheme and is forced
by soil and land use data and observations of precipi-
tation, air temperature, wind, humidity, and radiation.
Model-derived variables include snow water and mul-
tiple-layer soil moisture tendencies, surface tempera-
ture, and latent and sensible heat fluxes. The VIC

dataset also provides the model-forcing data including
precipitation. The precipitation data are based on daily
totals from the CPC COOP stations, with an approxi-
mate density of one gauge per 700 km2 (Maurer et al.
2002), which is gridded to a 1/8° � 1/8° resolution
(Shepard 1984; Widmann and Bretherton 2000). Varia-
tion as a result of orography is incorporated into the
data using an adjustment factor for each month and
grid cell, which is calculated as the ratio of monthly
mean precipitation from PRISM (section 2e) to that of
the COOP data.

i. Global Meteorological Forcing Dataset for Land
Surface Modeling

GMFD (Sheffield et al. 2006) is a high-resolution (3
hourly and 1° � 1°) dataset spanning 1948–2000, devel-
oped by Princeton University’s Land Surface Hydrol-
ogy Research Group to provide near-surface meteorol-
ogy variables on space–time scales necessary for forcing
land surface and hydrology models. The forcing data
includes precipitation fields, which are developed using
NCEP global reanalysis as the primary input and uses
other data to correct known reanalysis errors and to
disaggregate the corrected precipitation fields to the
desired 3-hourly, 1° resolution. The precipitation obser-
vations are the Climatic Research Unit (CRU) monthly
climate variables (which include rain day statistics), the
GPCP daily precipitation product, and the Tropical
Rainfall Measuring Mission (TRMM) 3-hourly precipi-
tation. The corrections to the NCEP data are for (i) rain
day frequency statistics (Sheffield et al. 2004), which
involves resampling NCEP daily precipitation to match
the rain day statistics of CRU, GPCP, and TRMM ob-
servations; and (ii) rain gauge undercatch, which uses
monthly adjustment ratios from Adam and Letten-
maier (2003). Spatial downscaling uses probabilistic re-
lationships between precipitation intensity observed on
a daily reanalysis grid, with observed gridcell fractional
coverage as determined from higher-resolution precipi-
tation observations. Temporal downscaling uses prob-
ability density functions derived from TRMM.

3. Data rescaling

The precipitation datasets used in this study have
spatial resolutions ranging from 1/8° to 2.5°. To com-
pare these data directly, the data were rescaled prior to
the analysis to a common 2.5° � 2.5° grid, extending
from the Pacific coast to slightly east of the Rocky
Mountains and from northern Mexico to slightly north
of the U.S.–Canadian border (27.5°–50.0°N and 130.0°–
102.5°W). For datasets having a horizontal resolution
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smaller than 2.5°, simple box averaging was employed
to rescale the data. For those datasets having an origi-
nal horizontal grid size of 1° or smaller, upscaling was
done iteratively to prevent the propagation of unde-
fined values that occur over the Pacific Ocean for rain
gauge data as well as to prevent the spatial propagation
of small-scale, intense precipitation events to the
coarser scale. Bilinear interpolation was then employed
to adjust the 2.5° data such that all datasets have col-
located gridcell centers. Because PCA has been shown
to be sensitive to domain shape (e.g., Richman and
Lamb 1985; Richman 1986), we opted to modify the
PRISM data at its southern boundary to account for its
lack of data over northern Mexico by filling five data-
void grid cells centered at 28.75 °N with values of their
nearest northern neighbor. The temporal resolutions of
the nine datasets vary from 3 hourly to monthly. How-
ever, monthly averages of temporally high-resolution
data are often available. Monthly products were used
for all datasets except the USMex, for which we con-
structed monthly mean values from daily data. The pe-
riod of study is January 1986–July 2000, which is the
time of maximum overlap between datasets. Units of
measure have been converted to mm month�1 for all
datasets.

4. Methods

S-mode, rotated PCA operating on the correlation
matrix is used to disaggregate the domain of the west-
ern United States into regions that are unique and spa-
tially cohesive with respect to their precipitation cli-
mate. Prior to the analysis, monthly precipitation values
are weighted by (cos�)1/2, where � is latitude, to correct
for latitudinal differences in grid spacing (e.g., Wilks
2006). The correlation matrix is used as the dispersion
matrix because there are large differences in precipita-
tion variance across the domain and using the correla-
tion matrix (rather than the covariance matrix) pre-
vents the high-variance grid cells from disproportion-
ately influencing the results (Jolliffe 2002; Wilks 2006).
The correlation coefficient can be sensitive to data non-
normality, and monthly precipitation data are skewed.
However, normality is not required for PCA to be valid
(Wilks 2006). In preliminary analyses, we tested the
sensitivity of the methodology to transformations of the
input data (which brought the data closer to normal)
and found no notable differences in the resulting prin-
cipal component (PC) loading patterns.

The appropriate number of PCs to rotate is selected
using the scree test (Cattell 1966), the log eigenvalue
(LEV) diagram, and the North et al. (1982) eigenvalue
separation test. The scree test and LEV diagram use a
plot of the eigenvalue spectrum (eigenvalues in de-

creasing order) and the log eigenvalue spectrum, re-
spectively, and the appropriate truncation point is ob-
served as a discontinuity in slope. For the scree plot,
this appears as a transition point between the steeply
sloped part of the spectrum to the left and the gently
sloped portion to the right (Wilks 2006), which marks
the point where the cumulative variance explained with
each added PC is approaching zero. For the LEV dia-
gram, the log eigenvalues that form an approximately
straight line indicate the exponential decay of PCs
dominated by uncorrelated noise (e.g., Wilks 2006), so
these and subsequent PCs would not be retained. The
eigenvalue separation test is applied to avoid separating
closely spaced PCs. Neighboring PCs whose eigenval-
ues are close in size are associated with large sampling
errors whereby different samples may produce differ-
ent linear combinations of the closely spaced PCs. As
such, the patterns produced by closely spaced PCs (“ef-
fectively degenerate multiplets”) are not independent
but rather random mixtures of the true population PCs
(North et al. 1982), and these should not be separated
in a rotated PCA (North et al. 1982; Jolliffe 2002).
Neighboring multiplets are identified as those having
overlapping standard error bars, where standard error
is estimated by � � �(2/N)1/2, and where � is the eigen-
value and N is the sample size (North et al. 1982). Be-
cause monthly precipitation data are autocorrelated,
the standard error approximation is modified in this
study to use an effective sample size. Specifically, we
use N* � N(1 � r2)/(1 � r2), which is appropriate for
variances (Bretherton et al. 1999), where r is the do-
main-averaged autocorrelation coefficient. The auto-
correlation ranges from 0.34 to 0.39 for the nine
datasets.

The PCs are rotated using the direct oblimin oblique
rotation method. Before rotating, each PC is weighted
by the square root of their corresponding eigenvalue,
which makes interpretation more intuitively meaning-
ful because the weighted PC elements are then a mea-
sure of the correlation between the original data and
the PC time series (e.g., Richman and Lamb 1987;
Wilks 2006). The rotated PCA is used because rotation
has been shown to improve the interpretability of the
solution and can eliminate some problems caused by
the orthogonality constraint associated with unrotated
PCs such as Buell patterns, which are artificial and mis-
leading patterns resulting from domain shape rather
than any physical relationship between variables (Buell
1979) and larger sampling errors as discussed above
(Richman 1986; Richman and Lamb 1987; Jolliffe 2002;
Wilks 2006). Additionally, rotated PCs (RPCs) show
more similarity to the original data than unrotated so-
lutions (Richman 1986; Wilks 2006) and, for regional-
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ization studies in particular, rotated PC solutions have
been shown to be more stable to changes in domain size
and shape (Richman and Lamb 1985; Richman 1986;
White et al. 1991). The oblique rotation rather than an
orthogonal rotation is chosen because oblique methods
have been shown to be more stable with respect to
changes in spatial and temporal domain and also supe-
rior in achieving simple structure (White et al. 1991).

The rotated PCs are used to regionalize the domain
of the western United States according to the maximum
loading method (Comrie and Glenn 1998). This ap-
proach assigns each grid cell to the RPC onto which it
loads most strongly, and the grid cells assigned to the
same RPC are then grouped together into distinct “re-
gions,” which results in the regionalization of the do-
main.

The degree of similarity between rotated PC solu-
tions obtained from different datasets is assessed by
quantitatively comparing their respective loading ma-
trices using the congruence coefficient (Harman 1976):

g �

	
j�1

n


bjabjb�

��	
j�1

n

bja
2 ��	

j�1

n

bjb
2 ��1�2

, 
1�

where ba is a loading from rotated loading vector A
from one solution, bb is a loading from rotated loading
vector B from another solution, and n is the number of
variables in each eigenvector, which for S-mode PCA
corresponds to spatial positions. A value of �1 for the
congruence coefficient represents perfect agreement
between solutions, and a value of �1 represents perfect
inverse agreement and a value of 0 indicates no agree-
ment. The congruence coefficient is preferred to the
correlation coefficient for measuring pattern similarity
because it preserves the mean (whereas the correlation
coefficient measures deviations from the mean), and
the mean is an important feature of a PC loading vector
(Richman 1986). Following Richman (1986) and the
references therein, the guidelines shown in Table 2 are
adopted as an indicator of the degree of likeness be-
tween solutions, which are based on the Monte Carlo
studies of the distribution of the congruence coefficient

by Korth and Tucker (1975). From this table, the con-
gruence coefficient is biased toward higher values as
compared to the correlation coefficient and, according
to Richman (1986), any coefficient smaller than 0.7 rep-
resents a match that is not any better than would be
expected by “randomly spinning” the PC axes prior to
matching a set of PC loading vectors.

Two additional comparative RPC analyses are per-
formed following the methodology just described to
test the sensitivity of the method to differences in spa-
tial resolution and temporal domain. The USMex and
GMFD data are used for these sensitivity tests because
they have long records and a desirable original 1° � 1°
spatial resolution. The 1° scale is small enough to pro-
vide a meaningful comparison with the 2.5° data, while
not being so small as to become computationally diffi-
cult to process. The RPC solutions obtained using 1°
versus 2.5° data are compared using USMex and
GMFD data. Next, using 1° data from USMex and
GMFD, the affect of temporal sample size is tested by
comparing results obtained using data from January
1986 to July 2000 versus the longer time series of Janu-
ary 1950–December 2000. In each case, the loading pat-
terns are compared using the congruence coefficient as
the indicator of similarity.

5. Results

a. Principal component analysis and regionalization

Figure 1 gives the scree graphs, LEV diagrams, and
eigenvalue separation tests for each dataset. Based on
our interpretation of Figs. 1a–c, five PCs are retained
and rotated for each dataset. The slope discontinuity
observed on the scree and LEV graphs occurs at the
fifth or sixth eigenvalue; however, the choice of retain-
ing five versus six PCs is subjective, and the level of
ambiguity varies by dataset. The eigenvalue separation
test shown in Fig. 1c is a plot of �k � �k and �k�1 � �k�1,
where �k is the kth eigenvalue, �k�1 is its neighboring
eigenvalue, and �k and �k�1 are their corresponding
standard error estimates. The intersection of these two
lines is an indication that neighboring eigenvalues are
not adequately separated. In Fig. 1c, effective degen-
eracy occurs at the sixth PC for nearly all datasets and,
therefore, five PCs are retained. The first five unrotated
PCs collectively account for between 76% and 85%
(depending on dataset employed) of the variance con-
tained in the original data (Table 3).

The loading patterns corresponding to the five RPCs
for each dataset are shown in Fig. 2 and are named and
ordered according to their geographic centers: Pacific
Northwest, West Coast, Southwest, Northern Plains,

TABLE 2. Interpretation of congruence coefficient representing
the degree of likeness between rotated loading vectors.

�0.98 Excellent
�0.92 Good �0.98
�0.82 Borderline �0.92
�0.68 Poor �0.82

Terrible �0.68
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and Colorado Plateau. The rotated loading patterns
given in Fig. 2 show the important influence of topog-
raphy on the precipitation climate of the western
United States. All datasets indicate a spatial pattern of
variation centered over the Pacific Northwest, which is
bounded to the east/southeast by the Rocky Mountains.
There is also a California-centered pattern bounded to
the east by the Rocky Mountains. The Southwest load-
ing pattern is centered over northern Mexico and ex-
tends into Arizona and New Mexico, and is bounded to
the north by the Colorado Plateau. The Northern
Plains loading pattern is centered over the northern
Great Plains at the state of Montana, and the Rocky
Mountains bind the south/southwestward extent of the
precipitation variability pattern. The fifth RPC for all
datasets is centered over the high-elevation areas of the
central Rocky Mountains near the Colorado Plateau.

The results of the principal component–based region-
alization using the maximum loading method are shown
in Fig. 3. Figure 4 gives the monthly climatology for
each of the five regions shown in Fig. 3 according to the
nine datasets. The Pacific Northwest region extends

from the Pacific coast to the Rocky Mountains, and its
southern boundary is near the northern limit of the
Sacramento Valley and the southern limit of the Cas-
cades. This region has a cold-season precipitation re-
gime with a maximum in November–January (Fig. 4)
that is associated with cyclonic storms emanating from
the northern Pacific and dry summers. The West Coast

TABLE 3. Percent variance explained by the first five principal
components.

Dataset

PC component

1 2 3 4 5

GPCC 28.95 20.99 16.03 6.4 4.30
GPCP 32.42 20.80 17.2 6.44 3.85
CMAP 28.94 21.05 16.45 6.45 4.10
NCEP2 27.92 25.60 16.02 6.20 4.93
GMFD 35.32 20.88 16.99 6.66 3.93
USMex 33.16 21.45 18.62 7.36 4.47
NARR 32.94 20.19 17.04 7.25 4.51
VIC 34.02 19.37 17.62 7.42 4.74
PRISM 34.08 21.35 17.48 6.75 4.52

FIG. 1. (a) Scree plot, (b) LEV diagram, and (c) eigenvalue separation test for the nine precipitation datasets.
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FIG. 2. Rotated loading patterns corresponding to the five retained PCs and for each
dataset.
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region extends from the Oregon–California border
southward to include the entire state of California and
extends eastward to include all or part (depending on
the dataset) of Nevada. The eastern boundary of the
West Coast region is in the vicinity of where the Great
Basin meets the Rocky Mountains. This region also has
a winter precipitation regime similar to the Pacific
Northwest but with its maximum occurring January–
March. This seasonal shift in the cold-season maximum
is attributed to a more southern concentration of cy-
clonic storm activity and the southward progression of
the jet stream (Trewartha 1981; Mock 1996). The
Southwest region is bound to the west at approximately
the Arizona–California border in the vicinity of the
Mojave Desert, which marks the transition between the
Sonora Desert and the higher elevations of the Great
Basin. Its northern boundary is near the Mogollon Rim,
which marks the southern edge of the Colorado Plateau
in Arizona. This Southwest region experiences a sum-
mer precipitation climate, with a peak from July–
September marking the arrival and duration of the
North American monsoon. The Northern Plains region
is bound to the west by central or eastern Idaho (de-
pending on the dataset) near where the Rocky Moun-
tains intersect the northern Great Plains. This region
includes most or all of the state of Montana; however,
the horizontal extent region varies among datasets with
respect to the proportion of Idaho and Wyoming con-
tained. The Northern Plains region experiences an
early summer (May–July) precipitation regime arising
from the summer land–sea temperature gradient, which
allows for advection of Gulf of Mexico moisture into
the deep continental interior (Trewartha 1981). The
Colorado Plateau region spans the high-elevation areas
of Colorado and Utah (and Wyoming according to the
CPCC, GPCP, and CMAP data). This region exhibits a
bimodal precipitation regime that includes an early
summer precipitation maximum similar to the precipi-
tation climate of the Northern Plains and another maxi-
mum in late summer during the North American mon-
soon. For the Colorado Plateau, the positioning of the
region itself (Fig. 3) explains some of the differences
observed among the datasets with respect to the

monthly climatology. For example, the summer peak
centered in August is not observed according to the
GPCP, CMAP, or GPCC data. This is probably be-
cause the Colorado Plateau region extends farther
north according to these three datasets, thus the region
is out of the range of primary North American mon-
soon influence.

FIG. 4. Monthly climatology (January–December) for the five
regions.

FIG. 3. The five precipitation regions obtained from each dataset using the maximum loading method.
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b. Dataset intercomparison

Figure 5 gives the congruence coefficients for all data
pairs and for each of the five rotated loading patterns
shown in Fig. 2. For the Pacific Northwest loading pat-
tern, there is a high level of similarity among data with
congruence coefficients above 0.93 (the good-to-
excellent range) for all data pairs. For the West Coast
and Southwest, the similarity among data is very high in
general, with congruence coefficients at or above 0.97
for most data pairs. The exception is NCEP-2, which
generally exhibits only “borderline” agreement with
the other data (g � 0.86–0.93). For the Northern Plains
loading pattern, congruence is generally in the good-to-
excellent range (g  0.92) except for the comparisons
between NCEP-2 with NARR and VIC, which show
only borderline agreement (g � 0.89–0.92). For the
Colorado Plateau, there is good-to-excellent congru-
ence (g  0.92) among datasets with the exception of
NCEP-2, which exhibits borderline congruence (g �
0.88–0.92) with all but two datasets (GPCC and CMAP,
g � 0.94). The clustering of high-congruence coeffi-
cients in the southwest and northeast quadrants of each
panel in Fig. 5 highlights two data groups that exhibit
very similar loading patterns. These are the GPCP,
CMAP, and GPCC datasets (Group A) and the
NARR, USMex, GMFD, VIC, and PRISM datasets
(Group B). These datasets show a higher level of con-
gruence within groups (g � 0.97–1.0, g � 0.98–1.0, g �
0.98–1.0, g � 0.97–1.0, g � 0.96–1.0 for the Pacific
Northwest, West Coast, Southwest, Northern Plains,
and Colorado Plateau, respectively) and lesser congru-
ence between groups (g � 0.95–0.98, g � 0.96–0.99, g �
0.97–0.99, g � 0.93–0.97, g � 0.92–0.97 for the Pacific
Northwest, West Coast, Southwest, Northern Plains,
and Colorado Plateau, respectively).

Figure 6 shows the difference between each loading
pattern and an ensemble mean, where the ensemble
mean was created from the average of the nine datasets
for each RPC as

E
i, r� �
1
N 	

n�1

N

xn
i, r�, 
2�

where E(i, r) is the ensemble mean for the rth RPC at
position i, and xn(i, r) is the nth ensemble member for
the rth RPC at position i, and N is the number of en-
semble members. To relate the differences observed in
Fig. 6 with the original precipitation data, we consider
the time-varying amplitudes of the five PCs. Specifi-
cally, we isolate the months in the January 1986–July
2000 record in which the PC amplitudes are strongest,
which we take as those above the 80th percentile. The
average precipitation for those months corresponding
to the largest amplitudes is shown in Fig. 7 for each
dataset.

In Fig. 6 for the Pacific Northwest, loading pattern
differences between datasets occur primarily along the
Rocky Mountains from Idaho to Colorado. This is
probably related to the differences in original spatial
resolution among datasets where the higher resolution
data (NARR, USMex, GMFD, VIC, and PRISM) are
better able to represent the orographic enhancement of
precipitation that occurs along the western Rocky
Mountains than the coarser data. Some of this high-
resolution information is carried over to the coarser
scale when the data are regridded to the 2.5° spatial
resolution (Guirguis and Avissar 2008). This enhanced
precipitation along the Rockies for the Group B
datasets is also seen in the raw precipitation data shown
in Fig. 7. In Fig. 6 for the West Coast, the NCEP2 data
are shown to differ from the ensemble over most of the
domain, which is a result of a shift to the southeast of
the West Coast loading pattern for the NCEP-2 data as
compared to the others (Fig. 2). Considering Fig. 7, this
shift appears to be related to the overestimation of pre-
cipitation in the vicinity of Arizona, which causes grid
cells in the area to load more strongly onto the West
Coast RPC than the other datasets. Also for the West
Coast loading pattern and considering the other

FIG. 5. Congruence coefficient for each data pair.
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FIG. 6. Difference from ensemble of rotated loading patterns, where the ensemble was
created from the average of the nine datasets for each RPC.

836 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 9

Fig 6 live 4/C



FIG. 7. Mean precipitation for those months in which the PC amplitudes exceed the 80th
percentile.
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datasets, differences are observed in the intermountain
region in Fig. 6, which in Fig. 7 appears to be related to
the degree of severity of the eastward wet-to-dry pre-
cipitation gradient. For example, the GPCC and CMAP
show a much stronger precipitation gradient with drier
inland conditions, and GMFD shows a weaker gradient
with wetter intermountain conditions. For the South-
west, the loading pattern differences appear to result
from differences among data in their representation of
the North American monsoon. Specifically, in Figs. 6
and 7, the data differ with respect to the strength of the
monsoon signal as well as the spatial extent of monsoon
influence. In Fig. 6 for the northern plains, the data
differences are observed primarily over the Rocky
Mountains, which in Fig. 7, are related to the tendency
of the Group A datasets to represent drier conditions
over Idaho, eastern Washington, Wyoming, Utah, and
Colorado as compared to the Group B datasets. Also in
Fig. 6 for the Northern Plains, the NCEP-2 data dem-
onstrates much stronger loadings onto the northern
plains RPC as compared to the other datasets, which (in
Fig. 6) appears to be a result of the comparatively wet
conditions observed over the northern half of the do-
main for the NCEP-2 data. In Fig. 6 for the Colorado
Plateau, differences between datasets are observed
over much of the domain. These differences are pri-
marily a result of (i) the drier conditions observed over
the Southwest region for the GPCC, GPCP, and CMAP
data as compared to the other datasets, and (ii) the
wetter conditions observed for the intermountain re-
gion and along the Rocky Mountains according to
PRISM, VIC, NARR, USMex, and GMFD, which is
likely related to the original spatial resolution of these
datasets. Also for the Colorado Plateau loading pat-
tern, the NCEP-2 data differs greatly from the other
datasets, which in Fig. 2 is observed as an elongation to
the west of the NCEP-2 Colorado Plateau RPC relative
to those of the other datasets. In Fig. 7, this appears to
be caused by overestimated precipitation along the
northern part of the domain according to NCEP-2.

c. Space–time sensitivity studies

Table 4 gives the results of two comparative RPC
analyses using data from USMex and GMFD, which
were designed to test the sensitivity of the methodology
to differences in spatial resolution and temporal do-
main. The spatial resolution sensitivity study uses
Eq. (1), where ba is the RPC from the dataset at its
original 1° resolution, and bb is the loading pattern from
the same dataset rescaled to 2.5°. Because the calcula-
tion represents a point-to-point comparison, linear in-
terpolation is applied to the coarse-resolution loading

vector during the scale sensitivity analysis. The analysis
of sensitivity to temporal sample size uses Eq. (1),
where ba is the loading vector obtained from 1° data
over a long record (January 1950–December 200), and
bb is the loading vector obtained from 1° data from
same dataset over a shorter record (January 1986–July
2000).

In Table 4, the methodology is shown to be stable to
changes in spatial resolution and temporal domain. The
rotated loading patterns obtained using a shorter versus
longer time domain are shown to be very similar with
congruence coefficients exceeding 0.98, representing
excellent agreement, for all five RPCs and for both
datasets. For the spatial resolution sensitivity analyses,
the loading patterns obtained using 1° versus 2.5° data
are shown to exhibit good agreement with congruence
coefficients in the range of 0.95–0.97. Figures 8a and 8b
give the results of the regionalization for the 1° USMex
and GMFD data over the shorter and longer records,
respectively. A visual comparison of Fig. 8a with Fig. 3
shows the regionalization results to be very similar for
the USMex and GMFD data, whether 1° or 2.5° data
are used. The regionalization results for the short-term
versus the long-term data are shown to be very similar
(cf. Figures 8a versus 8b). The minor differences ob-
served are generally a result of the migration of one or
two grid cells into a neighboring region. Because grid
cells bordering two neighboring regions are often mod-
estly loading onto both corresponding PCs, it is not
unexpected to observe this shift from one experiment
to the next.

6. Summary and conclusions

This study has identified the precipitation climate re-
gions of the western United States while testing the
utility of the methodology, which has been traditionally
applied to rain gauge data, to alternate data products.
Specifically, we employed rotated PCA with observa-
tional precipitation data to identity the dominant pat-
terns of covariability in the western United States and
to isolate spatially cohesive regions that experience

TABLE 4. Congruence coefficients for (a) precipitation data at
1° vs 2.5° and (b) precipitation data for January 1950–December
2000 vs January 1986–July 2000.

Rotated PC

(a) (b)

USMex GMFD USMex GMFD

Pacific Northwest 0.97 0.97 0.99 1.0
West Coast 0.97 0.97 0.99 1.0
Southwest 0.97 0.96 0.99 1.0
Northern Plains 0.96 0.97 0.99 1.0
Colorado Plateau 0.97 0.96 0.99 1.0
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similar temporal variability. This analysis was con-
ducted on nine precipitation datasets including two re-
analysis datasets, four rain gauge datasets (two of which
use orographic adjustment), two satellite–rain gauge
combined datasets, and one multiple-sourced product.

The dominant covariability patterns corresponding
to the first five RPCs are centered over Washington,
central California, northern Mexico at the border with
Arizona and New Mexico, Montana, and Wyoming/
Colorado. Using the congruence coefficient as a mea-
sure of loading pattern similarity, we compared the pat-
terns obtained from each of the nine precipitation
datasets and found the methodology to be reasonably
stable to alternate data sources. That is, the congruence
coefficient indicated good-to-excellent similarity be-
tween most datasets, with the exception of NCEP-2,
which frequently demonstrated only borderline agree-
ment with the other datasets. Also from this analysis,
loading pattern differences were shown to be related to
differences among datasets primarily in their represen-
tation of (i) the precipitation over the Rocky Moun-
tains, (ii) the eastward wet-to-dry precipitation gradient
that occurs during the cold season, (iii) the magnitude
and spatial extent of the North American monsoon sig-
nal, and (iv) the precipitation in the desert southwest
during spring and summer. The overestimation of pre-
cipitation by NCEP-2 was shown to be responsible for
the general lack of similarity between NCEP-2 and the
other datasets.

To regionalize the domain of the western United
States into subregions representing unique precipita-
tion climates, we applied the maximum loading prin-
ciple, which groups those grid cells exhibiting a similar
temporal variability. This process produced five distinct
regions whose centers and borders were found to be
physically reasonable and which highlight the relation-
ship between the precipitation climatology and the lo-
cal topography.

Sensitivity experiments were conducted in which we
compared the RPC solutions obtained from data having

different spatial resolutions and temporal domains but
alike otherwise. These results showed the methodology
to be stable to spatial/temporal data differences. How-
ever, it is worth mentioning that the spatial/temporal
characteristics of precipitation data can affect the out-
come of the regionalization when the eigenvalue sepa-
ration test is used for deciding the number of PCs to
rotate because standard error calculations are depen-
dent on the sample size (measured in the time domain)
and autocorrelation structure (which can be affected by
spatial resolution) of the underlying data.

The results of this study have applications for the
installation and planning of ground-based instrumenta-
tion and/or for climate research. Furthermore, we see
interesting uses for numerical modeling experiments.
The boundaries obtained from PCA-based regionaliza-
tion can be used for selecting the extent of a model
domain or for the positioning of focused high-resolu-
tion grids within a coarser-scale domain. The method-
ology can also be used to make decisions about grid
resolution, where the goal is to ensure that there are an
adequate number of grid cells available to represent
each distinct region. Additionally, for model evaluation
purposes, this methodology provides an analytical way
to disaggregate the domain into smaller subdomains to
focus on model performance for specific climate or
weather features and/or to study local land–atmosphere
feedback. Previous precipitation regionalization studies
have relied on rain gauge data. For numerical modeling
studies, however, satellite data are potentially more
useful because climate modeling experiments often in-
clude an oceanic region. Additionally, for a domain
composed of complex topography as the western
United States, it is not clear a priori that rain gauge data
are the best choice for a regionalization study. The find-
ings that the methodology shows stability to the choice
of precipitation dataset employed therefore extends the
utility of the method to include domains where there is
uncertainty in observations.

A detailed intercomparison of the nine precipitation

FIG. 8. The five precipitation regions obtained from 1° USMex and GMFD data over (a) the January 1986–July 2000 time domain
and (b) the longer period of January 1950–December 2000.
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datasets is described in a companion paper (Guirguis
and Avissar 2008). In that paper, we provide a multiple
dataset analysis of precipitation variability and persis-
tence as well as season- and location-specific assess-
ments of observational precipitation data uncertainty
for the western United States and for its five subre-
gions.
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