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ABSTRACT

This paper presents an intercomparison of precipitation observations for the western United States. Using
nine datasets, the authors provide a comparative climatology and season- and location-specific evaluations
of precipitation uncertainty for the western United States and for five subregions that have distinct pre-
cipitation climates. All data are shown to represent the general climate features but with high bias among
datasets. Interannual variability is similar among datasets with respect to the timing of precipitation excesses
and deficits, but important differences occur in the spatial distribution of specific anomalous events. Dataset
distribution differences, as represented by their cumulative density functions (CDFs), are statistically sig-
nificant for 80% of data combinations stratified by subregion and season. The CDFs of anomaly fields are
more similar but uncertainty remains, as data differences are significant for 40% of dataset comparisons.
Observational uncertainty is low for persistence studies because the data are found to be similar with
respect to (i) grid cell estimates of a characteristic persistence time scale and (ii) distributions of anomaly
length scales. Spatially, the greatest uncertainty in magnitude differences occurs along the Rocky Mountains
in winter, spring, and fall, and along the California coastline in summer. In linear (phase) association, the
greatest differences occur in northern Mexico during all seasons; along the Rocky Mountains in winter,
spring, and fall; and in California, Nevada, and the intermountain region in summer. Overall, data similarity
is lowest in summer as a result of a reduction in phase association and an increase in amplitude differences.

1. Introduction

The western United States is a region marked by
limited water resources and a fast-growing population,
making it sensitive to variations in the water cycle. In-
terannual climate variability can alter the amount of
water stored as snow in the Western Cordillera, which
affects river flow and, consequently, the region’s water
resources. The frequency and occurrence of extreme
precipitation events can be highly variable, and reliable
forecasts of these events remain elusive (e.g., Ralph et
al. 2005). This is partly a result of weakness in model
parameterizations in their ability to approximate com-
plex land–atmosphere dynamics, particularly over com-
plex terrain. However, uncertainty in observations is
also a contributing factor. Model evaluation and diag-
nostics require the use of systematic and high-quality
observations, which are logistically difficult to obtain in

mountainous regions. There are several sources of pre-
cipitation data available for the western United States,
including estimates from rain gauges, ground radar, sat-
ellite, and reanalysis. Each data product contains error
that is space and time variant, and it is difficult to know
a priori which data product is most reliable and best
suited for model evaluation. If a high level of observa-
tional data uncertainty exists, then it is possible that the
choice of dataset for model evaluation could affect con-
clusions regarding model skill.

Data reliability depends on issues such as latitude,
topography, and seasonality. For example, sampling er-
ror associated with rain gauge data can become large
over mountains where gauge coverage is sparse. Some
data products have aimed to solve this problem by ap-
plying statistical methods to rain gauge data to correct
for the affect of orography (Daly et al. 1994). However,
error associated with these products could be large for
those areas where gauge density is particularly low, and
error could be introduced from poorly fit regression
parameters. Satellite data are available over mountain
regions, but precipitation estimates become less reli-
able poleward of approximately 40° where geostation-
ary satellite measurements are not available and where
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precipitation estimates rely on polar-orbiting satellites,
which have a poor temporal sampling rate. Addition-
ally, microwave scattering algorithms are problematic
over snow- or ice-covered surfaces (Xie and Arkin
1997), which limits their use during cold seasons.
Merged precipitation products use information from
various sources, including rain gauges and satellites, as
a means of rectifying latitudinal variations in sampling
error and correcting for bias present in the individual
data sources (Huffman et al. 1997; Xie and Arkin 1997;
Adler et al. 2003). However, sampling error remains an
issue over mountainous regions because these data
products use rain gauge data as a major data compo-
nent. Global and regional reanalysis data are also avail-
able for the western United States. However, these pre-
cipitation estimates are heavily influenced by model pa-
rameterizations (Kalnay et al. 1996; Kistler et al. 2001;
Kanamitsu et al. 2002; Mesinger et al. 2006), which do
not perform well for all locations and weather regimes.

Precipitation data intercomparison studies aim to
provide a measure of the current state of observational
data quality and uncertainty by comparing different
datasets or precipitation estimation algorithms. Xie and
Arkin (1995) compared IR and microwave satellite pre-
cipitation estimates with rain gauge data and found
general agreement for warm seasons over the tropical
Pacific but poorer correspondence over land areas dur-
ing cold seasons. Similar findings were reported by
Ebert et al. (1996), who compared three precipitation
estimation algorithms against rain gauge data and
found good agreement in the tropical western Pacific
and over Japan in summer but poor agreement over
Europe in winter. Costa and Foley (1998) compared six
precipitation datasets for the Amazon Basin and found
general agreement among gauge-based datasets of
long-term average climatology but noted important dif-
ferences with interannual variability and significant bias
in comparisons with reanalysis. Janowiak et al. (1998)
compared a merged product (Huffman et al. 1997) with
reanalysis and found strong large-scale similarity but
noted poor agreement for some regional features. Gru-
ber et al. (2000) compared two merged satellite–gauge
products (Huffman et al. 1997; Xie and Arkin 1997) and
found strong spatial and temporal correlation but also
noted significant differences, which they attribute to
differences in the use of atoll rain gauge data and aero-
dynamic gauge corrections. Gottschalck et al. (2005)
compared several daily and subdaily datasets for the
continental United States and found that, when used to
force a land surface hydrology model, observational
data differences produced large differences in some
prognostic hydrology fields.

This paper contributes to these efforts by providing

an intercomparison for the western United States, using
nine state-of-the-art precipitation datasets commonly
used in hydrometeorological research. Specifically, we
consider the Global Precipitation Climatology Project
Combined Precipitation Dataset, version 2 (GPCP);
Climate Prediction Center (CPC) Merged Analysis of
Precipitation (CMAP); Global Precipitation Climatol-
ogy Center monitoring product (GPCC); CPC retro-
spective United States and Mexico daily precipitation
analysis (USMex); Parameter-elevation Regressions on
Independent Slopes Model (PRISM); National Centers
for Environmental Prediction–Department of Energy
Reanalysis 2 (NCEP2); North American Regional Re-
analysis (NARR); Variable Infiltration Capacity (VIC)
Retrospective Land Surface Dataset (VIC); and the
Global Meteorological Forcing Dataset for land surface
modeling (GMFD). These data have spatial resolutions
ranging from 1/8° to 2.5° but are rescaled to a common
grid for this analysis to allow for direct comparison. We
focus on data uncertainty, as it pertains to moderately
long-term climatology studies on the regional-to-
continental scale. Therefore, we consider monthly 2.5°
precipitation fields over a 15-yr period. The research
presented here differs from other intercomparison
studies; this research includes the bulk of observational
precipitation datasets available for moderately long-
term studies in the western United States. Additionally,
we provide location-specific assessments of uncertainty,
using the results of a companion paper (Guirguis and
Avissar 2008, hereafter GA08) to focus on specific re-
gions within the domain of the western United States
that have been found to have distinct precipitation cli-
mates. The precipitation datasets, the rescaling method,
and the notation are discussed in section 2. In section 3,
we briefly consider the effects of spatial rescaling. The
results are presented in sections 4 and 5. Section 4 fo-
cuses on general climate features including seasonality,
interannual variability, and persistence. Section 5 pro-
vides a quantitative assessment of observational data
uncertainty. A summary and conclusions are presented
in section 6.

2. Data and methods

The time domain for our analysis is January 1986–
July 2000, which is the period of maximum overlap be-
tween datasets. The results are stratified by season
throughout. For this analysis, winter is December–
February (DJF), spring is March–May (MAM), sum-
mer is June–August (JJA), and fall is September–
November (SON). Results are also stratified by loca-
tion. Specifically, we use the results of GA08, which
identifies five unique precipitation climates in the west-
ern United States using principal component analysis.
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In GA08, regionalization results are presented for nine
precipitation datasets. In this paper, a composite of
those regionalization results is used to subdivide the
domain for spatial averaging and discussion. The five
unique precipitation regions are referred to as the Pa-
cific Northwest, West Coast, Southwest, Northern
Plains, and Colorado Plateau regions. They are mapped
in Fig. 1.

a. Datasets

The datasets employed in this study and their spatial/
temporal characteristics are shown in Table 1, along
with relevant resources for data documentation. This
section provides a short data description, primarily to
address issues of dataset independence to highlight
those datasets sharing some common sources. A more
detailed description of each dataset can be found in
GA08.

The GPCC and USMex are rain gauge datasets, of
which the GPCC is available globally and the USMex is
available over the continental United States and
Mexico. These two datasets are likely to have some
overlapping stations. However, the GPCC contains
only a fraction of the information represented by the
USMex (7500 rain gauges globally for the GPCC versus
13 000–15 000 in the United States for the USMex (Hig-
gins et al. 2000; Fuchs et al. 2007). The PRISM and VIC
datasets are rain gauge products that use orographic
adjustment to account for the affect of elevated terrain
on precipitation. The development of the PRISM uses
linear regression between gauge measurements and el-
evation (Daly et al. 1994). The VIC uses an adjustment
factor, calculated as the ratio of monthly precipitation
from the PRISM to that of rain gauge data (Maurer et
al. 2002). The GPCP and CMAP datasets are merged
satellite–gauge products. Over land, they use many of
the same data sources, including the GPCC, as their
rain gauge component, but they differ in their merging
methodology (Adler et al. 2003; Xie and Arkin 1997).
The NCEP2 and NARR are reanalysis products, which
use a data assimilation system to merge observations

from many sources. Precipitation is a prognostic field in
both reanalysis products and is heavily dependent on
model parameterizations (Kanamitsu et al. 2002;
Mesinger et al. 2006). The GMFD uses data from the
NCEP reanalysis as its primary input and applies rain
gauge and satellite data to correct for known errors and
to downscale the data to a higher spatial and temporal
resolution (Sheffield et al. 2006).

b. Rescaling

For this analysis, all datasets are rescaled to a com-
mon 2.5° � 2.5° grid that runs from the Pacific coast to
the eastern Rocky Mountains and from northern
Mexico to just north of the U.S.–Canadian border
(28.75°–48.75°N and 128.75°–103.75°W). Box averaging
was used to upscale those datasets having spatial reso-
lutions smaller than 2.5° � 2.5°. For datasets having an
original horizontal grid spacing of 1° � 1° or smaller,
the upscaling was done iteratively, where at each itera-
tion the horizontal scale was increased by 100% until
the desired 2.5° scale was achieved. The iterative
method was implemented to prevent the propagation of
undefined values occurring over the Pacific Ocean for

FIG. 1. Composite regionalization for the western United States
based on GA08.

TABLE 1. Main characteristics of precipitation datasets used in
this study.

Dataset
Spatial

resolution
Temporal

domain Data source

GPCCa 2.5° � 2.5° From 1986 Rain gauge
GPCPb 2.5° � 2.5° From 1979 Rain gauge, satellite
CMAPc 2.5° � 2.5° From 1979 Rain gauge, satellite
NCEP2d 210 km � 210 km From 1979 Reanalysis
GMFDe 1° � 1° 1948–2000 Reanalysis, rain gauge,

satellite
USMexf 1° � 1° From 1948 Rain gauge
NARRg 32 km � 32 km From 1979 Reanalysis
VICh 1/8° � 1/8° 1950–2000 Rain gauge with

orographic
adjustment

PRISMi 4 km � 4 km From 1890 Rain gauge with
orographic
adjustment

a Global Precipitation Climatology Center Monitoring Product
(Rudolf and Schneider 2005; Fuchs et al. 2007).

b Global Precipitation Climatology Project Combined Precipita-
tion Dataset, version 2 (Adler et al. 2003).

c CPC Merged Analysis of Precipitation (Xie and Arkin 1997).
d NCEP–DOE Reanalysis 2 (Kanamitsu et al. 2002).
e Global Meteorological Forcing Dataset for land surface model-

ing (Sheffield et al. 2004).
f CPC retrospective United States and Mexico daily precipitation
analysis (Higgins et al. 2000).

g North American Regional Reanalysis (Mesinger et al. 2006).
h VIC Retrospective Land Surface Dataset (Maurer et al. 2002).
i Parameter-elevation Regressions on Independent Slopes Model
(Daly et al. 1994).
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rain gauge data and to prevent the unrealistic spatial
propagation of small-scale, intense precipitation events
to the coarser scale. For example, upscaling directly
from 1/8° to 2.5° might cause an isolated precipitation
event to be disproportionately represented over a large
land area because the mean is sensitive to outliers,
whereas upscaling iteratively seemed to eliminate this
problem while still maintaining the general features of
the original high-resolution data. Finally, bilinear inter-
polation was employed to adjust the 2.5° data so that all
datasets have collocated grid cell centers.

c. Notation

Precipitation anomaly fields are calculated by sub-
tracting the long-term climatic monthly mean from
each monthly observation as

x�m�i, k� � xm�i, k� � xm�i�, �1�

where the prime represents an anomaly field, xm(i, k)
represents monthly precipitation at position i and time
k occurring in month m, and xm(i) is the long-term
climatology for month m at position i. Angle brackets
denote spatial averages as

�x� �
1
p �

i�1

p

x, �2�

where p is the number of 2.5° grid cells in the region
being averaged over, which ranges from 10 for the Col-
orado Plateau region to 18 for the Southwest region.
Overbars represent temporal averages as

x �
1
t �k�1

t

x, �3�

where t is the temporal sample size. The standard de-
viation is represented by Sx and 	x for spatial and tem-
poral spread, respectively. The correlation coefficient
for data pairs x and y is represented by rxy and 
xy for
correlation in the space and time domain, respectively.

It is convenient for some analyses to compare each
dataset against a common reference dataset to identify
data differences. For this, we use an ensemble dataset
as the reference dataset, which is taken as the mean
over all datasets as

E�i, k� �
1
N �

n�1

N

xn�i, k�, �4�

where E(i, k) is the ensemble at position i and time k,
xn(i, k) is the nth ensemble member at position i and
time k, and N � 9 is the number of ensemble members.

The PRISM dataset does not include data for north-
ern Mexico. Therefore, for the Southwest region, any
analyses involving the PRISM data use only those grid
cells located in the United States.

3. Effects of rescaling

Figure 2a shows the spatial distribution of long-term
mean precipitation for each dataset at its original spa-
tial resolution and rescaled to a common 2.5° � 2.5°
grid. Considering first the original data in Fig. 2a (left
column), all datasets, regardless of spatial scale, repre-
sent the general features of the precipitation climate.
The Pacific Northwest and northern California are
shown to receive much more precipitation than the rest
of the domain, and southern California, western Ari-
zona, and northern Mexico are comparatively dry. All
datasets represent the enhancement of precipitation
along the windward side of the coastal ranges and Cas-
cades in northern California, Oregon, and Washington
where Pacific airstreams encounter orographic uplift.
The higher-resolution data having spatial scales of 1° or
smaller (NARR, USMex, GMFD, VIC, and PRISM)
additionally represent orographic precipitation associ-
ated with the Sierra Nevada and coastal ranges in cen-
tral and southern California. These datasets also repre-
sent the zone of precipitation enhancement that occurs
on the windward side of the Rocky Mountains, which is
observed as a roughly linear zone of high precipitation,
running from the northwest part of the domain over
Idaho to the southeastern part of the domain over Col-
orado. The very high-resolution data having spatial
scales smaller than 1° (NARR, VIC, and PRISM) are
further able to show the rain shadow effect that occurs
over the San Joaquin Valley, which lies between the
coastal ranges and the Sierra Nevada in central Cali-
fornia. The effect of rescaling the high- and very high-
resolution data to a 2.5° � 2.5° grid (Fig. 2a, right
column) is to lose much detail of precipitation spatial
variability. However, some important details are trans-
ferred to the larger grid. The NARR, USMex, GMFD,
VIC, and PRISM still show the enhancement of pre-
cipitation over the Rocky Mountains, which is not as
clearly represented by other datasets. This orographic
signal is muted according to the GMFD as a result of
wetter conditions in the northern plains.

4. Dataset intercomparison of climatology

a. Seasonality

Long-term seasonal mean precipitation is given in
Fig. 3. Here, all datasets capture the general seasonal
features of the western United States. During winter,
all data show the eastward wet–dry precipitation gradi-
ent associated with orographic uplift of Pacific air-
streams along the western coast and the subsequent
rain shadow effect to the east. During spring, wetter
conditions are observed over the Colorado Plateau and
Northern Plains regions, which are associated with the
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FIG. 2. (a) Spatial distribution of long-term mean precipitation for the datasets at (left) their original resolution
and (right) rescaled to 2.5° � 2.5°. (b) Bias as measured against the ensemble reference dataset for winter, spring,
summer, and fall.
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advection of Gulf of Mexico moisture into the deep
continental interior, whereas drier conditions are seen
along the northern coastal regions. During summer, the
West Coast and Pacific Northwest regions are shown to
be at the peak of their dry season, whereas precipitation
increases occur in the Southwest region, Northern
Plains, and eastern Colorado, which are associated with
the North American monsoon (NAM) and Great Plains
low-level jet. During fall, the domain transitions from
the warm- to cold-season precipitation regime and,
therefore, fall exhibits many of the same characteristics
as winter but to a lesser degree.

Figure 2b gives the seasonal bias � for each dataset n

calculated against the ensemble reference dataset E.
Specifically, Fig. 2b shows

�n�i� �
1
t �k�1

t

�xn�i, k� � E�i, k�. �5�

The overall mean precipitation �xn� is given in Table 2,
and the mean bias ��n� is given in Table 3. In Figs. 2b
and 3 and Tables 2 and 3, the GPCP, CMAP, and
GPCC data show drier conditions relative to other
datasets for all seasons and regions. Conversely, the
GMFD, VIC, and PRISM generally show wetter con-
ditions. Spatially, dataset differences are greatest along
the western coast and along the path of the Rocky

FIG. 3. Long-term seasonal precipitation for (left to right) winter, spring, summer, and fall.
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Mountains. This may be related to the original spatial
scale of the datasets, owing to the ability of the higher
resolution data to represent orographic precipitation
enhancement over the Sierra Nevada in California and
over the western flanks of the Rocky Mountains (cf.
Fig. 2a). However, sampling error associated with poor
gauge coverage by the GPCC dataset (also used in the
CMAP and GPCP) may also be a factor. The oro-
graphic adjustment employed in the development of
the VIC and PRISM would contribute to the higher
precipitation estimates by these datasets over these
parts. Also notable in Figs. 2b and 3 are differences
between the GPCP and CMAP over eastern Oregon,
Nevada, and the northern plains, especially in winter,
where larger precipitation amounts are observed for

the GPCP compared to the CMAP. This is likely a
result of the use of systematic gauge corrections in the
development of the GPCP data, whereas the CMAP
gauge data are uncorrected, and most systematic errors
occur as undercatch (Fuchs et al. 2007). The GMFD
data and especially the NCEP2 data show wetter con-
ditions over the Northern Plains in spring and summer
relative to the other data, which may be related to con-
vection parameterizations used in the derivation of
NCEP2 precipitation fields. The GMFD data show wet-
ter conditions over the Colorado Plateau region and the
state of Nevada in winter than is observed by any other
dataset. During summer, the GMFD, VIC, USMex, and
especially NCEP2 data show a stronger monsoon signal
in the Southwest region, whereas the NAM signal is

FIG. 3. (Continued)
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much more subtle in the CMAP and GPCC data (Fig.
3). For the NCEP2, the spatial extent of the monsoon
signal is restricted westward, as observed by compara-
tively dry conditions over the western part of northern

Mexico and extending northward into Arizona and
Utah (Fig. 2b). Another important difference observed
in Figs. 2 and 3 is that, whereas (Fig. 3) the NARR data
generally show a similar spatial pattern of precipitation

TABLE 3. Same as Table 2 but for the mean bias as measured against the reference dataset (mm month�1).

GPCC GPCP CMAP NCEP2 GMFD USMex NARR VIC PRISM

Domain DJF �11.3 �6.2 �11.4 �1.7 9.2 0.1 0.8 11.9 11.7
MAM �8.0 �3.9 �8.2 7.1 5.2 �2.1 �0.3 6.1 5.3
JJA �6.5 �3.6 �6.9 10.4 4.9 �1.3 �3.2 3.6 1.3
SON �6.4 �3.9 �6.8 1.3 5.1 �0.7 0.2 7.0 6.3

Pacific Northwest DJF �24.3 �15.8 �24.4 �3.6 12.5 �1.8 12.8 31.3 32.0
MAM �14.8 �11.1 �15.1 9.6 6.2 �3.8 7.6 17.3 15.2
JJA �7.3 �5.0 �7.4 11.6 6.0 �4.6 �2.5 5.3 3.2
SON �13.5 �10.6 �14.5 �1.1 8.5 �2.3 6.7 19.9 18.2

West Coast DJF �13.4 �9.1 �13.1 �6.8 13.5 4.9 �3.5 17.1 14.1
MAM �8.1 �3.8 �8.1 0.9 7.2 1.5 �2.6 6.6 5.7
JJA �2.4 �1.0 �2.6 2.1 3.3 �0.6 �2.6 0.2 0.5
SON �4.6 �2.2 �4.6 �1.2 5.9 0.2 �2.6 3.3 3.2

Southwest DJF �4.1 �2.7 �4.3 3.3 3.9 1.3 �2.7 2.4 2.0
MAM �2.6 �0.4 �3.0 8.0 0.8 �0.4 �3.9 1.0 1.0
JJA �8.5 �5.5 �9.5 8.5 7.0 2.9 �3.7 8.1 2.4
SON �3.7 �2.7 �4.0 7.1 2.2 0.6 �3.2 3.2 1.7

Northern Plains DJF �6.3 �0.9 �6.5 0.5 6.6 �2.5 �0.9 3.7 3.6
MAM �7.8 �1.7 �8.1 7.6 8.0 �5.4 �1.6 2.3 0.9
JJA �7.5 �1.6 �7.7 21.0 3.1 �4.7 �4.9 0.9 �0.8
SON �4.5 �0.9 �4.8 0.9 3.9 �2.0 0.0 3.6 3.5

Colorado Plateau DJF �8.6 �1.4 �9.1 �3.5 11.7 �2.1 �2.1 4.0 3.2
MAM �7.4 �2.4 �7.2 9.5 4.9 �3.0 �1.0 3.3 1.8
JJA �5.8 �4.7 �6.5 9.1 4.0 0.0 �1.6 1.2 1.4
SON �5.5 �3.0 �6.0 �1.1 5.9 0.0 0.4 4.1 3.5

TABLE 2. Long-term mean precipitation (mm month�1).

GPCC GPCP CMAP NCEP2 GMFD USMex NARR VIC PRISM

Domain DJF 34.1 39.2 34.0 43.7 54.6 45.5 46.3 57.3 58.8
MAM 31.2 35.3 31.0 46.3 44.4 37.1 38.8 45.3 46.4
JJA 28.9 31.7 28.4 45.8 40.2 34.1 32.2 38.9 35.5
SON 27.3 29.7 26.8 34.9 38.7 32.9 33.8 40.6 40.6

Pacific Northwest DJF 78.5 87.0 78.4 99.2 115.3 101.0 115.5 134.1 134.8
MAM 54.9 58.6 54.6 79.3 75.9 65.9 77.4 87.0 84.9
JJA 23.9 26.3 23.8 42.9 37.2 26.7 28.7 36.6 34.4
SON 53.1 56.0 52.1 65.5 75.2 64.3 73.4 86.5 84.8

West Coast DJF 43.9 48.1 44.2 50.5 70.8 62.2 53.8 74.4 71.4
MAM 24.0 28.4 24.0 33.1 39.4 33.7 29.5 38.7 37.9
JJA 6.9 8.3 6.7 11.3 12.6 8.7 6.7 9.5 9.7
SON 15.0 17.4 14.9 18.4 25.5 19.8 17.0 22.9 22.8

Southwest DJF 15.6 17.0 15.4 23.0 23.6 21.0 17.0 22.1 22.2
MAM 13.3 15.5 12.9 23.9 16.7 15.5 12.0 16.9 19.8
JJA 39.7 42.6 38.6 56.7 55.1 51.0 44.4 56.2 48.3
SON 21.5 22.5 21.1 32.2 27.3 25.8 22.0 28.4 27.4

Northern Plains DJF 12.9 18.3 12.7 19.7 25.8 16.6 18.3 22.9 22.8
MAM 36.3 42.4 36.0 51.8 52.2 38.7 42.5 46.4 45.0
JJA 45.3 51.2 45.1 73.8 55.9 48.1 47.9 53.7 52.0
SON 23.5 27.1 23.2 28.9 32.0 26.0 28.1 31.6 31.5

Colorado Plateau DJF 17.0 24.3 16.5 22.2 37.4 23.6 23.5 29.6 28.9
MAM 30.7 35.7 30.9 47.7 43.0 35.2 37.2 41.4 39.9
JJA 24.8 25.9 24.2 39.7 34.7 30.7 29.0 31.9 32.0
SON 21.4 23.9 20.9 25.8 32.8 26.8 27.3 31.0 30.3
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as do other high-resolution data, much drier conditions
are seen along the California coast during winter and to
a lesser extent in spring and fall (Fig. 2b). This is also
observed for the NCEP2, suggesting that model param-
eterizations used in the data assimilation process may
be an issue here for both reanalysis products.

To estimate overall bias among datasets and its spa-
tial distribution, we consider the spread among en-
semble members (datasets) and the corresponding co-
efficient of variation (as in Yang and Arritt 2002). The
spread is represented by the ensemble standard devia-
tion as

SE�i, k� ��1
N �

n�1

N

�xn�i, k� � E�i, k�2, �6�

and the corresponding coefficient of variation is
given by

CV�i, k� � �E�i, k��E�i, k�. �7�

Figure 4 gives temporal averages of the ensemble
mean, spread, and coefficient of variation. The en-
semble spread (Fig. 4b) is shown to be large for the
Pacific Northwest during spring, fall, and particularly
winter; the Rocky Mountains in winter, spring and sum-
mer; coastal California during winter; and the Great
Plains and Southwest in summer. In Fig. 4c, the coeffi-

cient of variation is large for dry regions where the
precipitation frequency distributions are heavily
skewed toward zero, and the mean precipitation [de-
nominator in (7)] is small. The spread among datasets
for California reaches up to 55% of the mean during
winter, 90% during spring and fall, and up to 137% for
some coastal areas during summer. This implies that
data uncertainty for the West Coast region can be
larger than the mean precipitation received there. This
is similarly observed for the Southwest region but to a
lesser degree. Here, the spread can reach 93% of the
mean during spring and 75% during winter, summer,
and fall. The spread for the Pacific Northwest, whereas
generally larger in magnitude (Fig. 4b), represents a
smaller ratio of the mean (Fig. 4c), as here the coeffi-
cient of variation ranges from 15%–70% depending on
season and location. Smaller spreads are observed for
the Northern Plains and Colorado Plateau regions. For
the Northern Plains, the ensemble standard deviation
ranges from 5 to 19 mm month�1, which corresponds to
a coefficient of variation of 22%–58%. The spread for
the Colorado Plateau region ranges from 5 to 21 mm
month�1, which represents 21%–51% of the mean.

Empirical probability densities of precipitation val-
ues are shown in Fig. 5, stratified by season and region.
Each data vector represented in Fig. 5 is of length t � p,

FIG. 4. (a) Ensemble mean, (b) standard deviation, and (c) coefficient of variation.
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where t is the temporal sample size (t � 42–45 depend-
ing on season), and p is the number of spatial grid cells
(p � 10–18 depending on region). We apply the two-
sample Kolmogorov–Smirnov (K–S) test to compare
the distributions of precipitation between each pair
of datasets. The null hypothesis for the K–S test is
that data vectors x and y are drawn from the same
continuous distribution, against the alternative that
they are from different distributions. The test statistic is
max|Fx( j) � Fy( j)| , where Fx and Fy are the empirical
cumulative density functions (CDFs) from sample vec-
tors x and y. The null hypothesis is rejected if the test
statistic exceeds a critical value.

Figure 6 gives the results of the K–S test. The shaded
parts indicate that differences between distributions are
significant at the 95% level. Here, the null hypothesis
that x and y are drawn from the same population is
rejected more often than not, implying a significant de-
gree of data uncertainty. Specifically, the null is re-
jected 579 times out of 5 � 4�N�1

n�1 n � 720 comparisons,
where 5 is the number of regions, 4 is the number of
seasons, and n is the number of datasets. Figure 7 gives
the results of the K–S test for anomaly fields in which

the climatology has been removed, as in (1). Here, the
null hypothesis is rejected less frequently, implying that
seasonal anomaly distributions are more similar. How-
ever, uncertainty remains an issue, as significant differ-
ences are observed for 39% of the dataset comparisons
(283 out of 720). In Fig. 7, the greatest similarity is
observed during summer and fall for the Southwest,
Northern Plains, and Colorado Plateau regions and in
spring for the Northern Plains.

b. Interannual variability

Figure 8a shows spatially averaged annual anomaly
fields in which December–November is used as the av-
eraging period to maintain seasonal congruence (e.g.,
calendar year 1990 represents the period December
1989–November 1990). Also shown in Fig. 8a is the
phase and strength of El Niño–Southern Oscillation
(ENSO) according to the monthly multivariate ENSO
index. There is strong agreement between data sources
with respect to interannual peaks and troughs. All data
show a Pacific Northwest dry period between 1986 and
1994, after which time the region entered a wet phase
that extended through 1999. Extremes occurring in the

FIG. 5. Empirical cumulative density functions for (a) winter, (b) spring, (c) summer, and (d) fall.
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Pacific Northwest are the negative anomalies in 1987
and 1992 coinciding with warm phases of ENSO and
the positive anomalies during 1995–97, which occurred
during a cold ENSO period. The West Coast region
shows a similar pattern of dry conditions during the first
part of the record and wetter conditions later. Strong
positive anomalies are observed for the West Coast re-
gion in 1993, 1995, and 1998, all of which coincide with
the warm phase of ENSO. The Southwest region shows
an opposite anomaly pattern as compared to the Pacific
Northwest and West Coast, with wet conditions domi-
nating prior to 1994 and drier conditions observed
thereafter. Precipitation extremes for the Southwest in-
clude the relatively dry 1989 and the wet 1992, which
occur during cold and warm phases of ENSO, respec-
tively. The Northern Plains and Colorado Plateau re-
gions demonstrate some evidence of a linear positive
trend, with regularly spaced cycles of peaks and troughs
that do not deviate dramatically from normal. The ob-

served peaks and troughs appear to correspond fairly
consistently with warm and cold phases of ENSO, re-
spectively.

The data series for seasonal anomalies are shown in
Fig. 9. Strong similarity is observed among data for all
regions and seasons with respect to interannual highs
and lows. The NCEP2 data are shown to exaggerate
some anomalies relative to the other datasets, espe-
cially in summer. The difference between data in their
estimation of �x�� in Fig. 9 (measured on the y axis as
the difference between two time series) ranges from 2.3
to 35.8 mm month�1 for the Pacific Northwest, 1.0–25.7
mm month�1 for the West Coast, 2.8–57.6 mm month�1

for the Southwest, 1.8–58.0 mm month�1 for the North-
ern Plains, and 0.9–39.1 mm month�1 for the Colorado
Plateau region. For the Southwest, Northern Plains,
and Colorado Plateau regions, the maximum data dif-
ference drops to 26.4, 10.5, 14.5 mm month�1, respec-
tively, if the NCEP2 data are not considered. Figure 10

FIG. 6. Results of the two-sample K–S test for (a) winter, (b) spring, (c) summer, and (d) fall. Shading indicates that the difference
between the distributions of datasets x and y is significant at the 95% level.
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shows the seasonal time series in which the climatology
has not been removed. Here, the difference between
data in their estimation of �x� ranges from 10.8 to
92.3 mm month�1 for the Pacific Northwest, 2.7–55.6
mm month�1 for the West Coast, 4.0–73.4 mm month�1

for the Southwest, 6.5–83.7 mm month�1 for the North-
ern Plains and 6.0–50.1 mm month�1 for the Colorado
Plateau region. If the NCEP2 data are not considered,
the upper limit is reduced to 34.1, 21.5, and 29.2 mm
month�1 for the Southwest, Northern Plains and Col-
orado Plateau regions, respectively.

The winters of 1996/97 and 1997/98 are known for
being particularly eventful for the western United
States, and we consider them in more detail. The 1996/97
winter season brought heavy and extensive flooding to
the Pacific Northwest, Nevada, and California. The Si-
erra Nevada region was especially affected, and De-
cember precipitation in parts of Idaho was recorded at
more than 300% of normal (Lott et al. 1997). The 1997/98
winter season saw record-breaking warm and wet con-
ditions across the United States. The western United

States was particularly hard hit during February, which
brought 4 weeks of near-continuous storm activity to
California; and parts of the Southwest and Northern
Plains regions were also affected (Ross et al. 1998). In
Fig. 9, the 1996/97 winter season is wetter for the Pacific
Northwest, Northern Plains, and Colorado Plateau, and
the 1997/98 winter season is wetter for the West Coast
and Southwest. Also in Fig. 9, the spread among data is
relatively large for the 1996/97 winter season (6.1–33.0
mm month�1), whereas a smaller spread is observed for
the 1997/98 winter season (2.4–18.0 mm month�1).

The spatial distributions of the 1996/97 and 1997/98
winter anomalies according to each dataset are shown
in Fig. 8b. All datasets show the 1996/97 winter season
as having widespread wet conditions over the Pacific
Northwest, western Montana, Nevada, and California.
However, there are some important discrepancies be-
tween data sources. For example, eastern Montana,
Wyoming, and Colorado are shown to be mildly dry
according to the GPCP, CMAP, and GPCC data,
whereas the other datasets suggest wet conditions.

FIG. 7. As in Fig. 6 but for precipitation anomaly fields x� and y�.
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FIG. 8. (a) Annual precipitation anomaly fields and the phase and strength of ENSO according to the monthly multivariate ENSO
index. The warm (cold) phases of ENSO are represented by red and upward (blue and downward) triangular markers. Markers are
centered at the midpoint of a warm or cold period and their size is weighted by the magnitude of the ENSO anomaly. (b) Spatial
distribution of precipitation anomalies for the winters of 1996/97 and 1997/98. The anomalies were calculated by subtracting the
long-term DJF mean.
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There is also disagreement over the severity of the
anomaly over northern Nevada and Idaho during 1996/97.
The NARR, USMex, and VIC data suggest dramati-
cally wet conditions over Idaho as compared to the
other data, and the GPCC, GPCP, and CMAP data show
drier conditions over northern Nevada. For 1997/98, all
the datasets show anomalously wet conditions over
California. However, the magnitude of the anomaly is
highly varied. The CMAP and GPCC data show ex-
tremely widespread and wet conditions covering the
entire state of California and western Nevada, whereas
the PRISM, VIC, USMex, and NARR data show in-
tensely wet conditions only over the southern and
coastal parts of California.

c. Persistence

For our analysis of persistence, we calculate the one-
month lag autocorrelation coefficient and estimate the

characteristic time scale of persistence. The autocorre-
lation is calculated as

���� � �
k�1

t��

�x�k � x��x�k�� � x� ��x�
2 , �8�

where � is the lag in months, x� is the precipitation
anomaly calculated as in (1), t is the number of months
in the time series, and 	x� is the standard deviation of x�.
The data are detrended prior to the analysis to remove
any linear tendency in the data series.

The characteristic time scale of persistence is esti-
mated using a count of consecutive, like-signed
monthly anomalies as in Liu and Avissar (1999). A run
of length l represents the period after an anomaly is
observed in which x� maintains the same sign. Begin-
ning with the first anomaly xk�k1

� , we count the number
of consecutive months in which x� maintains the same
sign, and this value is denoted l1. The next run (which is

FIG. 9. Spatially averaged seasonal precipitation anomaly fields. The vertical dashed lines in the DJF time series correspond to the
anomaly fields shown in Fig. 8b.
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opposite in sign) begins with xk�k2
� , and the length of the

second run is denoted l2. This process repeats until the
end of the time series; however, the first and last runs
are omitted to avoid truncation at the end points. An
anomaly that maintains its sign for only one month
demonstrates no persistence and, therefore, l � 0. The
characteristic time scale of persistence is estimated as
the average length scale according to

L �
1
� �

k�1

n

lk, �9�

where � is the number of persistent runs in the time
series. We also consider the probability distribution of
lk for each dataset and region using the Kolmogorov–
Smirnov test to determine the degree of similarity be-
tween datasets in their representation of persistence.

The one-month lag autocorrelation coefficients are
shown in Fig. 11a. The coefficients range from �0.08 to
0.41 overall and are shown to vary geographically and

by dataset. Grid cells with statistically significant cor-
relations are shown in Fig. 11b. The correlations are
statistically significant at the 95% level (critical value of
0.148 for 173 degrees of freedom) only in the inter-
mountain region, northern Mexico, and southern Cali-
fornia. The VIC, USMex, and NARR data give larger
coefficients over northern Mexico relative to the other
data. The NCEP2 data show larger coefficients for grid
cells spanning Idaho, western Montana, and Wyoming,
which may be related to moisture recycling efficiency in
the spectral model. Figure 11c shows the estimated
characteristic persistence time scale. The time scale L
ranges from 0.68 to 2.2 months overall, with most of the
domain showing persistence on the order of 1–1.5 months.
Longer time scales of 1.5–2 months occur for parts of
California and northern Mexico. The USMex and NCEP2
data show longer time scales for northern Mexico, and
the PRISM, VIC, and USMex data demonstrate longer
time scales over a larger portion of California.

FIG. 10. As in Fig. 9 but without removing the climatology.
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FIG. 11. (a) One-month lag autocorrelation coefficient, (b) correlations significant at the
95% level shown as shaded, and (c) characteristic persistence time scale in months.
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Figure 12 shows the distribution of persistence length
scales for each precipitation region. Here, the ensemble
reference dataset is used as the precipitation data, from
which we calculate l1, l2, . . . , l� for each grid cell, and
these persistence length scale time series are then ag-
gregated over each precipitation region to give the dis-
tributions shown in Fig. 12. The median length scale for
the Pacific Northwest, Southwest, and Colorado Pla-
teau regions is one month, and the median length scale
is zero for the West Coast and Northern Plains. The
spread as represented by the interquartile range (IQR)
is two months, in which the 25th percentile is zero, and
the 75th percentile is two months for all regions. Out-
liers are shown as those larger than 1.5 � IQR, or lk �
5 months. The majority of outliers correspond to nega-
tive anomalies (not shown), suggesting that droughts
are more likely to persist for long periods than for pe-
riods of precipitation excess. The proportion of posi-
tive-to-negative anomalies exceeding five months is
(displayed as positive:negative) 12:10, 12:26, 23:53, 6:21,
and 6:17 for the Pacific Northwest, West Coast, South-
west, Northern Plains, and Colorado Plateau regions,
respectively.

The degree of similarity between datasets in their
representation of persistence is determined by compil-
ing length scale distributions as described above for
each of the nine datasets. Then we apply the two-
sample K–S test to compare the length scale distribu-
tions among datasets. The null hypothesis that two
samples comprised of lk from two different precipita-
tion datasets are drawn from the same distribution is
rejected only 4 times out of 5 � �N�1

n�1 n � 180 compari-

sons, where 5 is the number of regions and N is the
number of datasets. Statistically significant differences
occur for comparisons of the GPCP data against the
USMex, NARR, and VIC data for the West Coast re-
gion, and between the PRISM and NCEP2 data for the
Northern Plains region. For the West Coast, there are
slight differences between the cumulative densities of lk
for the GPCC, GPCP, and CMAP data as compared to
the USMex, NARR, VIC, and PRISM data. Specifi-
cally, the GPCC, GPCP, and CMAP data show higher
densities for lk in the range of 0–2 months and lower
densities for lk in the range of 2–4 months relative to the
USMex, NARR, VIC, and PRISM data; this difference
is large enough to achieve statistical significance for
comparisons between the GPCP data with the USMex,
NARR, and VIC data. For the Northern Plains, the
NCEP2 data show higher densities for lk in the range of
5–10 months and lower densities for lk in the range of
0–2 months; this difference is large enough to reach
significance for the comparison between the NCEP2
and PRISM data.

5. Observational data uncertainty

a. Spatial distribution of uncertainty

Figure 13 is used to assess the spatial distribution of
observational data uncertainty. For each grid cell, the
correlation coefficient and normalized root-mean-
square error (NRMSE) are calculated, in which the
NRMSE normalization factor is the standard deviation.
These quantities are calculated according to

�xy�i� � �
k�1

t

�x � x��y � y���x�y, and

�10�

NRMSExy�i� �
1
��1

t �k�1

t

�x�i, k� � y�i, k�2�1�2

,

�11�

respectively, where 	 in (11) is the average of 	x and 	y.
The quantities (10) and (11) are calculated for each
dataset pair, and the average of these quantities over
the 36 dataset combinations is taken as an estimate of
data uncertainty for each grid cell. Specifically, in Fig.
13 we show

��i� �
1
N �

n�1

N

�n�i�, and �12�

NRMSE�i� �
1
N �

n�1

N

NRMSEn�i�, �13�

where N � 36 is the number of dataset combinations.

FIG. 12. The distribution of persistence length scales for each
precipitation region. There is overlap of outliers such that each
plus sign (�) represents more than one length scale occurrence.
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The correlation coefficient provides a measure of the
phase association (
), or the phase error (1 � 
) be-
tween datasets. In Fig. 13a, the average dataset corre-
lation is in the range 0.34–0.98 for the domain as a
whole over all seasons. The correlation is lowest over
the Rocky Mountains in winter, spring, and fall; over
northern Mexico for all seasons; and over southern
California and the intermountain region in summer.
Table 4 gives the range of values of 
(i) for each season
and region. The correlation across seasons is in the
range of 0.78–0.98, 0.34–0.97, 0.43–0.95, 0.63–0.93, and
0.63–0.93 for the Pacific Northwest, West Coast, South-
west, Northern Plains, and Colorado Plateau regions,
respectively. The lowest correlations occur in spring for
the Pacific Northwest, in summer for the West Coast, in
fall for the Southwest, and in winter for the Northern
Plains and Colorado Plateau regions.

The NRMSE provides a measure of amplitude dif-
ferences between datasets. In Fig. 13b, the average
NRMSE is in the range of 0.28–1.62 for the domain as
a whole over all seasons. The NRMSE is generally high
over the Rocky Mountains, with the largest values ob-
served in these parts in winter and the smallest values
observed in summer. Large amplitude differences are
also observed in coastal California in summer and
in northern Mexico during all seasons. Values of
NRMSE(i) across seasons are in the range of 0.30–1.37,
0.28–1.37, 0.37–1.11, 0.44–1.36, and 0.47–1.62 for the
Pacific Northwest, West Coast, Southwest, Northern
Plains, and Colorado Plateau regions, respectively. In
Table 4, the largest errors are observed in winter for the
Pacific Northwest, Northern Plains, and Colorado Pla-
teau regions, whereas the largest errors are observed in
summer for the West Coast and Southwest regions.

b. Decomposition of the mean squared error

To give an overall indication of the degree of agree-
ment among datasets, we use the mean square error
(MSE) and apply the decomposition of Murphy (1988).
This methodology is commonly used in quantitative
forecast verification to compare forecasted and ob-
served fields to assess forecast skill. Here, we use the
method to compare observations from one dataset

TABLE 4. Range of values by season and precipitation region for
the correlation coefficient (
) and RMSE presented in Fig. 13.


 RMSE

Domain DJF 0.59–0.96 0.41–1.62
MAM 0.50–0.97 0.43–1.13
JJA 0.34–0.94 0.50–1.37
SON 0.43–0.98 0.28–1.11

Pacific Northwest DJF 0.85–0.96 0.43–1.37
MAM 0.78–0.97 0.47–1.13
JJA 0.83–0.94 0.55–0.88
SON 0.83–0.98 0.30–0.97

West Coast DJF 0.75–0.96 0.42–0.87
MAM 0.83–0.97 0.44–0.86
JJA 0.34–0.93 0.55–1.37
SON 0.53–0.97 0.28–1.07

Southwest DJF 0.59–0.95 0.41–0.97
MAM 0.50–0.95 0.43–1.06
JJA 0.61–0.89 0.54–1.07
SON 0.43–0.94 0.37–1.11

Northern Plains DJF 0.63–0.89 0.81–1.36
MAM 0.82–0.93 0.46–1.07
JJA 0.83–0.93 0.50–0.71
SON 0.81–0.92 0.44–1.00

Colorado Plateau DJF 0.63–0.93 0.56–1.62
MAM 0.77–0.88 0.53–0.90
JJA 0.74–0.90 0.62–0.95
SON 0.80–0.91 0.47–0.99

FIG. 13. (a) Average correlation coefficient and (b) NRMSE between datasets.
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against observations of another dataset. The MSE op-
erating on anomaly fields is represented as

MSEx�y� �
1
m �

i�1

m

�x�i � y�i�
2, �14�

where x� and y� are calculated as in (1) for two sets of
observations (datasets), and m is the number of paired
observations for a given 2D field (map). The MSE can
be decomposed according to Murphy (1988) as

MSEx�y� � ��x�� � �y���2 � Sx�
2 � Sy�

2 � 2Sx�Sy�rx�y�,

�15�

where the angle brackets represent spatial averages, Sx�

and Sy� represent the spatial standard deviations of x�
and y�, and r�x�y� represents the spatial anomaly corre-
lation coefficient. Equation (15) can be manipulated
algebraically by dividing by S2

y� and completing the
square to give the normalized MSE (NMSE), repre-
sented as

NMSEx�y� � ��x�� � �y��
Sy�

�2

A2

� �rx�y� �
Sx�

Sy�
�2

B2

� �1 � rx�y�
2 �

C2

,

�16�

where A2 is a nondimensional measure of the uncondi-
tional bias, B2 is a measure of the conditional bias, C2

is the phase error, and NMSE is the normalized MSE,
where NMSE � MSE/S2

y�. For analyses of fields (maps),
the terms in (16) can be physically interpreted as rep-
resenting the contribution to NMSE as a result of phase
error (C2), amplitude differences (B2), and error as a
result of map mean differences (A2; based on Livezey et
al. 1995).

Figure 14 provides the NMSE (averaged spatially
and temporally) and the terms of its decomposition for
all data combinations, and Table 5 gives the median
value taken over all data pairs. Also shown in Fig. 14 is
the term�Sx�/Sy� to describe how standard deviation dif-
ferences might affect the NMSE and terms A2 and B2.

An examination of Fig. 14 and Table 5 shows that
greater similarity between datasets is observed in win-
ter, spring, and fall as compared to summer, with me-
dian NMSE values of 0.42, 0.42, 0.41, and 0.70, respec-
tively. This summer reduction in similarity is a result of
a reduction in phase association and an increase in am-
plitude differences (Fig. 14 and Table 5). The clustering
of low NMSE values in the southwest and northeast
quadrants of Fig. 14 highlights two groups of “similar”
data: Group 1 are GPCC, GPCP, and CMAP data, and
Group 2 are USMex, NARR, VIC, and PRISM. These
datasets generally show strong phase association and
low bias within groups, and notably lesser phase asso-
ciation and higher bias between groups. The GPCC,
GPCP, and CMAP data are shown to be very similar,

FIG. 14. NMSE, the terms of its decomposition, and the ratio of standard deviations for the domain of the western United States.
The datasets listed on the y axis (x axis) represent x� (y�) in Eq. (16).
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with NMSE less than 0.22 for all seasons. The condi-
tional and unconditional bias between the GPCC,
GPCP, and CMAP data is small (A2, B2 � 0.03) and
phase association is strong (1 � C2 � r2

x�y� � 0.82 �
0.97). Strong similarity is also observed between the
VIC and PRISM data, with NMSE less than 0.13 in
winter, spring, and fall, and NMSE � 0.22 in summer.
The VIC and PRISM data demonstrate very little con-
ditional or unconditional bias (A2, B2 � 0.04) and
strong phase association (r 2

x�y� � 0.82 � 0.92). The
USMex and NARR data show relatively strong simi-
larity between each other and with the VIC and PRISM
data during winter, spring and fall, with NMSE ranging
from 0.12 to 0.41, squared anomaly correlation coeffi-
cients ranging from 0.80 to 0.91, and conditional (un-
conditional) bias ranging from 0.01 to 0.21 (0.01–0.07).
In summer, comparisons of the USMex and NARR
data against the VIC data show a reduced similarity
(NMSE � 0.58–0.73), which is primarily a result of an
increase in phase error (C2 � 0.38). The PRISM and
VIC data demonstrate a minimum similarity with
Group 1 during winter (NMSE � 0.38–1.20) as a result
of increased conditional (B2 � 0.06–0.69) and uncondi-
tional (A2 � 0.06–0.23) bias. The NCEP2 data are
shown to be generally dissimilar to the other data dur-
ing all seasons except winter, and it is especially dis
similar in summer. In Fig. 14, the NCEP2 data are shown
to exhibit lower phase association and higher condi-

tional and unconditional bias than is observed for com-
parisons between other datasets. The GMFD data gen-
erally show a greater similarity with Group 2 than with
Group 1 (mean NMSE � 0.47 and 0.58, respectively).

Table 6 provides seasonal averages of the spatial
standard deviation for each dataset, which affects the
NMSE through the term Sx�/Sy�. Standard deviation dif-
ferences between datasets are shown in Fig. 14 to con-
tribute to the bias terms A2 and B2 and to the NMSE in
winter, spring, and fall. During summer, the term Sx�/Sy�

is near one for all data pairs except the NCEP2, which
has a much larger spread than the other data (also in
Table 3). Aside from the NCEP2, the standard devia-
tion differences are greatest between Group 1 and
Group 2 datasets, where for Group 1 Sx� � 16.4–23.3
and for Group 2 Sx� � 15.8–36.7 mm day�1. In Table 6,
the standard deviations of the GMFD and NCEP2 data
generally occur in the midrange of these two groups
except during summer, when the NCEP2 spread is
large, as discussed above.

Figure 15 and Table 5 give the median NMSE and
decomposition terms for each season and region. The
NMSE is shown to be largest in the Southwest region in
summer, and the largest in the Northern Plains and
Colorado Plateau regions in winter (median NMSE �
1.53, 1.46, and 1.45, respectively). The summer reduc-
tion in dataset similarity in the Southwest is a result of
increases of all error components. For the Northern
Plains in winter, the increase in NMSE is a result of
increases in all error terms, but conditional and uncon-
ditional bias rise more sharply in winter than phase
error. For the Colorado Plateau in winter, the higher
NMSE is a result of an increase in unconditional bias.
For the Pacific Northwest region, the largest NMSE is
observed in summer, which is primarily a result of a
reduction in phase association because the bias terms
change very little across seasons. For the West Coast
region, the NMSE peaks in summer, which is a result of
increases in conditional bias and phase error.

6. Summary and conclusions

A comparison of precipitation between nine data
products revealed two groups of similar datasets. The
GPCP, CMAP, and GPCC (Group 1) were shown to
behave similarly as were the USMex, NARR, VIC, and
PRISM (Group 2). In general, Group 1 depicts drier
conditions relative to other data during all seasons and
for most of the domain. In previous studies, the satellite
components of the GPCP and CMAP data have been
shown to produce biased estimates of precipitation in
the midlatitudes (e.g., Adler et al. 2001), which could
help explain these findings. However, over land the
GPCP and CMAP are strongly influenced by gauge

TABLE 5. Median value of the NMSE and its decomposition
(A2, B2, and C2) taken over all data pairs.

NMSE A2 B2 C2

Domain DJF 0.42 0.05 0.08 0.27
MAM 0.42 0.05 0.07 0.29
JJA 0.70 0.06 0.15 0.45
SON 0.41 0.04 0.08 0.29

Pacific Northwest DJF 0.71 0.22 0.20 0.27
MAM 0.73 0.18 0.16 0.32
JJA 0.85 0.21 0.18 0.41
SON 0.66 0.18 0.16 0.29

West Coast DJF 0.85 0.25 0.26 0.34
MAM 1.09 0.31 0.34 0.39
JJA 1.22 0.22 0.42 0.49
SON 0.87 0.22 0.22 0.38

Southwest DJF 1.19 0.38 0.33 0.50
MAM 0.85 0.17 0.24 0.41
JJA 1.53 0.43 0.43 0.60
SON 1.04 0.22 0.34 0.51

Northern Plains DJF 1.46 0.48 0.46 0.53
MAM 0.86 0.20 0.24 0.40
JJA 0.71 0.14 0.16 0.41
SON 0.95 0.26 0.30 0.43

Colorado Plateau DJF 1.45 0.65 0.27 0.46
MAM 1.43 0.62 0.32 0.49
JJA 1.23 0.35 0.37 0.48
SON 1.03 0.43 0.20 0.40
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observations. This study has shown a strong similarity
between the GPCP, CMAP and the GPCC rain gauge
datasets, and any dry bias is similarly expressed by all
three datasets. Therefore, it is more likely that sampling
issues related to sparse gauge coverage over the west-
ern United States by the GPCC rain gauge dataset
(which is also used in the GPCP and CMAP) explains
the drier conditions observed by Group 1 relative to the
other datasets.

The largest differences within Group 1 occur as
higher precipitation reported by the GPCP. This is
likely a result of gauge corrections used in the devel-
opment of the GPCP data, which are not used in the

CMAP and GPCC. This is consistent with other studies
involving the GPCP and CMAP over land. For ex-
ample, Gruber et al. (2000) noted these differences
over northern hemispheric land areas including central
North America, which they also attribute to the GPCP
gauge corrections. The largest data differences within
Group 1 were observed in the Pacific Northwest and
Colorado Plateau regions in winter and in the northern
plains during all seasons (Table 2 and Fig. 2b).

Group 2 data generally show wetter conditions rela-
tive to other datasets, particularly in the Pacific North-
west in winter, spring, and fall and in the West Coast in
winter (Table 2 and Fig. 2b). Within this group, the VIC

FIG. 15. Median NMSE and decomposition terms for each season.

TABLE 6. Seasonal averages of the spatial standard deviation Sy� for each dataset.

GPCC GPCP CMAP NCEP2 GMFD USMex NARR VIC PRISM

Domain DJF 23.3 22.90 23.2 27.9 26.4 28.8 29.0 36.7 36.1
MAM 17.9 17.6 17.8 24.9 18.9 19.4 21.2 23.2 23.1
JJA 16.8 16.4 16.6 30.8 16.9 15.8 16.3 16.9 16.2
SON 18.7 18.3 18.4 22.3 19.9 19.1 21.1 24.0 24.4

Pacific Northwest DJF 29.7 28.6 29.3 31.8 27.4 33.5 34.5 43.4 41.9
MAM 19.3 18.1 19.5 24.1 17.1 20.4 22.1 25.4 24.3
JJA 10.2 10.4 10.2 19.3 10.4 8.7 11.2 11.7 11.1
SON 22.3 21.4 22.2 23.1 21.0 22.3 24.4 29.2 29.0

West Coast DJF 22.8 20.5 23.1 25.2 24.3 28.3 25.8 39.6 36.4
MAM 12.8 12.6 12.7 16.4 13.7 15.0 15.4 19.3 18.2
JJA 5.5 5.6 5.2 13.0 6.5 5.4 6.3 5.7 5.6
SON 11.2 10.3 11.2 13.3 12.1 11.5 11.9 14.8 15.0

Southwest DJF 8.9 7.5 8.9 11.9 9.8 10.0 10.4 11.9 11.2
MAM 9.2 8.2 9.0 15.8 8.9 8.7 9.5 10.2 10.4
JJA 18.2 15.6 18.1 30.6 16.8 16.0 16.3 16.9 14.9
SON 12.6 11.0 12.2 15.5 11.2 10.1 11.3 11.8 12.2

Northern Plains DJF 5.3 6.1 5.3 6.1 7.9 6.7 9.1 8.7 8.7
MAM 12.5 12.9 12.5 15.1 13.9 10.5 13.2 12.6 12.6
JJA 14.4 15.4 14.3 22.1 12.7 12.0 12.7 13.6 14.1
SON 9.2 9.4 9.2 10.0 9.8 9.0 11.5 11.5 12.3

Colorado Plateau DJF 6.3 7.6 6.1 7.3 9.9 6.8 9.1 8.2 8.0
MAM 9.4 9.2 9.1 14.7 9.8 8.8 11.4 10.1 9.7
JJA 9.2 8.2 8.8 17.4 9.4 8.0 9.7 8.8 9.1
SON 7.6 7.5 7.5 9.8 9.1 7.4 9.5 8.6 8.5
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and PRISM exhibit the wettest conditions among the
group as a result of the orographic adjustment em-
ployed in their development. These two datasets were
found to be very similar, which is not unexpected be-
cause the rain gauge data used in the VIC is adjusted
using data from the PRISM. The greatest differences
among Group 2 datasets in long-term mean precipita-
tion occur in the Pacific Northwest in winter, spring,
and fall and in the West Coast in winter (Table 2).
However, when error components are considered, the
largest differences are observed in summer for com-
parisons of the USMex and NARR against the VIC as
result of a summertime increase in phase errors. With
respect to data distributions (as represented by empiri-
cal CDFs), comparisons of Group 2 datasets were
shown to be significantly different for most regions and
seasons except for comparisons between the VIC and
PRISM. However, removing the climatology generally
eliminates any distribution differences between Group
2 datasets (Figs. 6 and 7).

The NCEP2 precipitation was generally observed in
the midrange of the two groups during winter and fall;
however, during spring and summer, the NCEP2 de-
picts wetter conditions than Group 2 (Table 2 and Fig.
2b). Previous studies have shown the NCEP2 to over-
estimate precipitation in the central United States dur-
ing spring and summer (Higgins et al. 1996) and in the
central-western United States during the North Ameri-
can monsoon (Janowiak et al. 1998). This has been at-
tributed to inadequacies in the treatment of the Great
Plains low-level jet by the spectral model, which results
in the transport of excess moisture into the central
United States (Higgins et al. 1996; Mo and Higgins
1996). This is consistent with our results; the NCEP2
excesses are observed to occur predominantly in the
Northern Plains and Colorado Plateau regions in spring
and summer and in the Southwest region where the
NAM dominates during summer and fall (the NAM
season is typically late summer and into September).
Our results also show higher precipitation values for
the NCEP2 relative to other data for the Pacific North-
west in spring and summer. In general, the pattern of
precipitation bias associated with the NCEP2 over
Washington and Oregon (Fig. 2b) is consistent with
Widmann and Bretherton (2000), who compared the
NCEP reanalysis to gauge-based observations adjusted
with PRISM climatology. Their study showed that the
NCEP data (relative to gauge observations) underesti-
mated precipitation west of the Cascades, while over-
estimating it to the east as a result of coarse represen-
tation of topography by the spectral model.

The GMFD was shown to be more similar to Group
2 than Group 1. However, it shows a high level of phase

error and bias when compared to both groups. The
GMFD shows the wettest conditions of long-term mean
precipitation relative to other datasets for all seasons
and regions except the Pacific Northwest during winter,
spring and fall. Although the GMFD uses the NCEP
reanalysis in its development, this study shows the
GMFD to be dissimilar to the NCEP2.

The results of this analysis underscore the high level
of uncertainty in precipitation observations for the
western United States. Additionally, the uncertainty
demonstrates important space/time dependencies,
which makes it difficult to quantify data error outright.
Uncertainty in observations should be considered when
using precipitation data for numerical model evalua-
tion. It is possible that the choice of the observational
dataset selected for a particular study could affect con-
clusions regarding model skill.

One limitation of this analysis is that it is not possible
to separate the effects of the rescaling from the effects
of other data differences on the results. This is recog-
nized as an important issue, especially because the most
similar datasets (GPCP, CMAP, and GPCC and
PRISM and VIC) share common data sources as well as
a common spatial scale. The similarities and differences
between datasets are likely a result of some combina-
tion of scale and precipitation estimation methodology.
However, the contribution of each dataset to the results
is difficult to quantify individually. Another limitation
is our inability to draw any conclusions about superior-
ity among datasets. This will likely remain a problem
because the ability to quantify error requires that we
make comparisons against the truth, and no dataset can
be assumed to represent the truth free from error.
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