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Background: Extreme heat events have been consistently associated with an increased risk of hospitalization for
various hospital diagnoses. Classifying heat events is particularly relevant for identifying the criteria to activate
early warning systems. Heat event classifications may also differ due to heterogeneity in climates among differ-
ent geographic regions, which may occur at a small scale. Using local meteorological data, we identified heat
waves and extreme heat events that were associated with the highest burden of excess hospitalizations within
the County of San Diego and quantified discrepancies using county-level meteorological criteria.
Methods: Eighteen event classifications were created using various combinations of temperature metric, percen-
tile, and duration for both county-level and climate zone level meteorological data within San Diego County. Pro-
pensity score matching and Poisson regressions were utilized to ascertain the association between heat wave
exposure and risk of hospitalization for heat-related illness and dehydration for the 1999–2013 period. We
icine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA.
ography, University of California, San Diego, La Jolla, CA 92093, USA.
ia).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2020.137678&domain=pdf
https://doi.org/10.1016/j.scitotenv.2020.137678
mailto:tbehmarhnia@ucsd.edu
https://doi.org/10.1016/j.scitotenv.2020.137678
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


2 S. McElroy et al. / Science of the Total Environment 721 (2020) 137678
Early warning systems
Climate and health
estimated both relative and absolute risks for each heat event classification in order to identify optimal defini-
tions of heat waves and extreme heat events for thewhole city and in each climate zone to target health impacts.
Results: Heat-related illness differs vastly by level (county or zone-specific), definition, and risk measure. We
found the county-level definitions to be systematically biased when compared to climate zone definitions with
the largest discrepancy of 56 attributable hospitalizations. The relative and attributable risks were often mini-
mally correlated, which exemplified that relative risks alone are not adequate to optimize heatwaves definitions.
Conclusions: Definitions based on county-level defined thresholds do not provide an accurate picture of the ob-
served health effects and will fail to maximize the potential effectiveness of heat warning systems. Absolute
rather than relative risks are a more appropriate measure to define the set of criteria to activate early warnings
systems and thus maximize public health benefits.

© 2020 Published by Elsevier B.V.
1. Introduction

The health burden of high ambient temperature has been increas-
ingly recognized and documented in the literature. A rise in ambient
temperature has been shown to be associated with increases in mortal-
ity and morbidity (Benmarhnia et al., 2015; Sheridan et al., 2009; Xu
et al., 2016; Cheng et al., 2019). Specifically, high heat events have re-
vealed increased risk of hospitalization for various diagnoses including
cardiovascular disease, acute renal failure, dehydration, heat illness
and respiratory disease (Ebi et al., 2004; Phung et al., 2016; Ponjoan
et al., 2017; Knowlton et al., 2009; Guirguis et al., 2018). For example,
16,166 excess emergency department visits and 1182 excess hospitali-
zations occurred in California during a heat wave that affected much
of the state in July 2006 (Knowlton et al., 2009). As the severity, fre-
quency and duration of extreme heat events continue to increase due
to climate change, the burden of heat on morbidity and mortality will
be exacerbated (Sheridan et al., 2009; Sheridan and Allen, 2018; Guo
et al., 2018). Consequently, continued research studying the health im-
pacts of ambient heat is crucial to inform policy action to reduce the
magnitude of these effects.

Although acute heat-related illness from high ambient temperature
occurs in various climates and countries around the world, these im-
pacts are largely preventable. Early warning systems have been imple-
mented in various cities globally, which activate measures to protect
the population from negative health impacts during extreme heat
events (Lowe et al., 2011; Matthies and Menne, 2009). Typically, mea-
sures includemedia releases, dissemination of heat advice to vulnerable
populations (Price et al., 2018, 2013; White-Newsome et al., 2014;
McGregor et al., 2015), provision of portable water in public of places,
advice on food hygiene, preparation and storage and other targeted in-
terventions (Lowe et al., 2011). Some studies have shown that these ac-
tions as part of heat warning systems can be effective in reducing
morbidity and mortality on hot days (Price et al., 2018; McGregor et al.,
2015; Vaidyanathan et al., 2019; Benmarhnia et al., 2019; Benmarhnia
et al., 2016), while the effectiveness of National Weather alerts has
been shown to be inconsistent (Weinberger et al., 2018).

Many studies have investigated health impacts associated with var-
ious heat waves definitions (Xu et al., 2016; Tong et al., 2010; Kent et al.,
2013; Chen et al., 2015; Xu et al., 2019; Liss et al., 2017). Defining heat
wave days could be particularly useful to identify the set of meteorolog-
ical criteria for triggering early warning systems. Such criteria can in-
clude temperature thresholds (e.g. percentiles exceeding the norm),
temperature metrics (maximum or minimum temperatures) or dura-
tion, for example. Some studies (Gasparrini et al., 2015; Benmarhnia
et al., 2014; Berko et al., 2014) highlighted that both the amplitude of
the risk (e.g. measured as a risk ratio) and the prevalence of the expo-
sure associated with a heat event are important for anticipating public
health impacts.

Other studies found that the heat-health relationship varies greatly by
geography (Gasparrini et al., 2015; Curriero et al., 2002). This is mostly
due to variations in meteorological conditions and micro-climates
(Schinasi et al., 2018) or population composition (Benmarhnia et al.,
2017; Hondula and Barnett, 2014; Hondula et al., 2013). A comprehen-
sive county-level analysis across counties of theUnited States highlighted
significant variability in health impacts for different identified thresholds
for heat-alert criterions (Vaidyanathan et al., 2019). Such differences can
be substantial even at a smaller scale level such as within a city or a
county (Li et al., 2015; Toloo et al., 2014). Therefore, adopting a single cri-
terion for a whole county may not provide an accurate picture of the
small scale variation of the observed health effects and will fail to maxi-
mize the potential effectiveness of heat warning systems.

San Diego County, California is a unique region to investigate such
small scale variations because it has 3 predominant climate zones:
coastal, inland, and desert (Thrower and Bradbury, 1977), spanning
approximately 4500 mile2 and a resident population of 3.3 million
(SANDAG, 2017). Due to this heterogeneity, we propose using separate
heat wave definitions for each unique climate zone within the county
and hypothesize that health burden will differ by the temperature dis-
tribution and measure used. A previous study (Guirguis et al., 2018)
found that in the County, health impacts occur at lower temperatures
in coastal locations compared to inland locations.

A previous study published in 2018 quantified, on the relative scale,
the health impacts of ambient temperatures at numerous thresholds
levels, within the same three climate zones in San Diego (Guirguis
et al., 2018). This previous analysis's main objective was to explore
how prevalence of living in a residence with air conditioning impacted
the association of heat and hospitalizations for the previous listed
conditions and whether the association was modified by age, ethnicity,
income, and home ownership. This study will build on these prior anal-
yses and focuses on informing early warning systems by examining the
heat-health relationship within the three climate zones compared to
the entire county climate thresholds to indicate the importance of
local heat wave definitions within one county.

In this paper, we propose an approach that compares various heat
events to identify actionable to maximize public health benefits. We
considered heatwaves and extreme heat events for each unique climate
zone within the county to evaluate whether the health burden differed
by the temperature distribution and measure used. We also quantified
the discrepancy in attributable number of a range of heat-related ill-
nesses when comparing county-level and climate zone-level heat
event classifications.
2. Materials and methods

2.1. Climate data

Temperature data were downloaded from a dataset that includes
data from National Ocean and Atmosphere Administration Cooperative
Observer (NOAA COOP) stations across the United States (NOAA, 2017).
The climate data was processed for San Diego County, including maxi-
mum temperature and minimum temperature from 1999 to 2013. For
the analyses, only the months of June to October were analyzed. The
data were subset into three micro climate zones: coastal, inland, and
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desert, as defined by the California Energy Commission (California S,
2017) (Fig. 1).

Various heat event classifications were modeled for the three geo-
graphical regions. Criteria consisted of a combination of percentiles,
temperature metrics and duration of extreme heat. Heat waves and 1-
day extreme heat events were defined using daily maximum andmini-
mum temperature metrics. Four percentiles were considered as heat
wave thresholds for each temperature metric: 90, 92.5, 95, and 97.5.
One day and two consecutive heat wave days were considered. Classifi-
cations included definitions using the distribution for the entire county
and for each climate zone for the 18 criteria for heat waves and extreme
heat events in order to quantify the importance of locally-defined heat
wave definitions (72 definitions in total). For example, when defining
heat waves and extreme heat events for the county level, a day would
be considered a heat wave or extreme heat event if the temperature
was above the 90th percentile of the temperature distribution for the
entire county. Alternatively,when considering climate zone level defini-
tions, a daywould be considered a heatwave or extreme heat event day
if the temperature exceeded the 90th percentile for the temperature
distribution of that specific climate zone.

2.2. Hospitalization data

Unscheduled hospitalizations at acute care facilities in San Diego
County that occurred in the months of May 1st to October 31st from
1999 to 2013were obtained from theOffice of StatewideHealth Planning
and Development Patient Discharge Data at the climate zone and county
level. The outcome variable was described as a hospitalization with a
Fig. 1.Map of San Diego County
primary diagnosis for any heat-related illness (ICD-9 992.0–992.9), in-
cluding dehydration (276.5), heat cramps (992.2), heat exhaustion
(992.3, 992.4 and 992.5), and heat stroke (992). Such specific outcomes
are useful and sensitive as an indicator of the response to extreme heat,
but may underestimate the overall burden associated with extreme
heat, which can include other outcomes of several other ICD codes such
as fluid and electrolyte disorder or acute kidney failure (Bobb et al.,
2014; Hopp et al., 2018). Included in the health data was the patient's
zip code of residence. Hospitalizations were assigned by aggregating
these residential zip codes into the three climate zones, coastal, inland,
and desert.

2.3. Data analysis

For each heat event classification, we first aimed at obtaining com-
parable set of heat events and non-heat wave events which resemble
each other in regard to time-varying confounders including long term
and seasonal patterns (year, month, day of the week) while allowing
for non-linear forms, i.e. by adding a quadratic term.We also considered
temperature lag variables that ranged from 1 to 4 day lags.

Weused a propensity scorematching approach to analyze thehealth
impacts of heat wave events (Austin, 2011). Propensity scores were
generated using logistic regressionwith one of the heat event classifica-
tions as the dependent variable and identified confounders as predic-
tors. This generation of propensity scores was repeated for each of the
18 different heat event measurements using the entire County and by
climate zone classifications. A one-to-one propensity score matching
was then completed for each of the heat events classifications. The
, separated by climate zone.
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matching was executed utilizing the onetomanymatch macro (Parsons,
2004). This macro uses the Greedy method of matching cases to con-
trols. More specifically, a case is matched to a control via the “best”
match, or by the propensity score with the greatest matching digits.
Once a control is selected for a case, it is not considered for any other
cases in the dataset.

Subsequently, after matching was completed, conditional general
linear models with a Poisson distribution and log link function was run
per the PROC GENMOD command in SAS to assess the relationship be-
tween heat-related illness hospitalizations and each heat event classifi-
cation. The strata statement within the PROC GENMOD procedure was
used to account for the matched data. Relative risks (RR) and their 95%
confidence intervals were estimated from this analysis. We then esti-
mated the absolute number of heat-related illnesses attributable to
each heat wave definition (Vaidyanathan et al., 2019; Benmarhnia
et al., 2014). The population attributable fraction (PAF) was derived
from both the relative risk (RR-1/RR). This was then multiplied by the
prevalence of heat event days and the average number of heat-related
illness hospitalizations. Previouswork has showed that both the relative
and absolute scales are important to report as they may not systemati-
cally coincide (Gasparrini et al., 2015; Benmarhnia et al., 2014; Nori-
Sarma et al., 2019). Analyses were executed for each zone (coastal, in-
land, desert) individually and for the entire county separately.
3. Results

Overall, there were a total of 11,708 hospitalizations in all three cli-
mate zones. The coastal region observed 7890 hospitalizations, the in-
land region experiences 3709, and the desert region had 109 heat-
related hospitalizations. Results of the study reveal heterogeneity in
the number of heat wave days in each climate zone when using the
heat wave definitions based on the county-wide temperature distribu-
tion in comparison to the desert, inland and coast specific temperature
distributions (Table 1). For example, when 90th percentile heat wave
thresholds were calculated from county-wide distributions, the fre-
quency of exceedance was much higher for the hottest desert zone 3
(exceeded on 540 days) compared to the cooler coastal zone 1
(exceeded on only 28 days). When calculated using zone-specific tem-
perature distributions, 90th percentile thresholds were exceeded on
276 days for each zone. The temperature threshold differed across
heat wave measurements. When considering all definitions using the
maximum temperature metric, the lowest threshold was 29.11 °C for
1-day extreme heat events at the 90th percentile in zone 1 while the
Table 1
Comparing zone-specific and city-wide temperature thresholds and number of days for each h

Heat wave measurement Climate zone in San Diego Cou

Zone 1-coastal

By county/zone

# days Temp. threshold

Max. temperature, 90th percentile, 1 day in length 276/28 33.4/29.1
Max. temperature, 92.5th percentile, 1 day in length 207/23 33.9/29.8
Max. temperature, 95th percentile, 1 day in length 138/14 34.6/30.7
Max. temperature, 97.5th percentile, 1 day in length 69/8 35.7/31.9
Min. temperature, 90th percentile, 1 day in length 276/561 17.8/18.8
Min. temperature, 92.5th percentile, 1 day in length 207/429 18.2/19.1
Min. temperature, 95th percentile, 1 day in length 138/292 18.7/19.6
Min. temperature, 97.5th percentile, 1 day in length 69/142 19.5/20.2
Max temperature, 90th percentile, ≥2 days in length 234/24 33.4/29.1
Max temperature, 92.5th percentile, ≥2 days in length 171/19 33.9/29.8
Max temperature, 95th percentile, ≥2 days in length 104/12 34.6/30.7
Max temperature, 97.5th percentile, ≥2 days in length 44/7 35.7/31.9
Min. temperature, 90th percentile, ≥2 days in length 258/213 17.8/18.8
Min. temperature, 92.5th percentile, ≥2 days in length 188/156 18.2/19.1
Min. temperature, 95th percentile, ≥2 days in length 109/98 18.7/19.5
Min. temperature, 97.5th percentile, ≥2 days in length 54/54 19.5/20.2
highest threshold was 36.55 °C for the zone-specific 2-day heat waves
at the 97.5th percentile in zone 3 (Table 1).

Fig. 2 shows attributable hospitalizations and relative risks associ-
ated with all heat wave definitions (using both county-wide and zone-
specific meteorological data). In the coastal zone, the highest number
of attributable hospitalizations estimated was 355 when considering
one day extreme heat events at the 90th percentile using maximum
temperature, while the lowest number of attributable hospitalizations
was 3 when considering 1-day extreme heat events and 2-day heat
waves at the 97.5th percentile of minimum temperature (Table S1). A
sensitivity analysis was performed to examine the effects of longer
heat waves of three and four consecutive in length. The 90th percentile
of maximum temperature was used for this analysis as it is the heat
wavemeasurementwith the greatest difference in attributable hospital-
izationswhen using the zone-specific or county-wide definition (Fig. 3).
These results showed similar trends to shorter heat waves, with high
variation in attributable hospitalizations by climate zone when consid-
ering climate-zone specific measurements (Table S4).

The relationship between relative risks and attributable hospitaliza-
tions differed substantially across the climate zones and the heat wave
definitions (Fig. 2). Heat waves and extreme heat events with the
highest RR (Tables S2 and S3) were not necessarily associated with
the highest attributable hospitalizations. When focusing on zone-
specific definitions, it appears that those defined based on the 90th or
92.5th percentiles were associated with the highest burden of attribut-
able hospitalizations in all zones (Table S1). Heat waves and extreme
heat events defined based on maximum temperature were systemati-
cally more impactful in zone 1 while in zones 2 and 3 those defined
both with maximum and minimum temperatures had the most impact
on burden of hospitalizations.

We also observed important differences in thenumber of attributable
hospitalizations between the heat waves and extreme heat events based
on the temperature distribution of the entire county compared to those
determined by the zone-specific temperature measurements (Fig. 3).
The largest discrepancy between the two criteria occurred with the 1-
day extremeheat event definition using the 90th percentile ofmaximum
temperatures: a difference from county-level and climate-zone level of
193 attributable heat-related hospitalizations when comparing the
zone-specific definition to the overall county-level definition (Fig. 2).

4. Discussion

In this paper, the importance of defining heat waves using sub-
regional meteorological data was shown by highlighting the large
eat wave, May–September 1999–2013.

nty

Zone 2-inland Zone 3-desert

By county/zone By county/zone

(°C) # days Temp. threshold (°C) # days Temp. threshold (°C)

276/261 33.4/33.2 276/540 33.4/34.7
207/187 33.9/33.7 207/410 33.9/35.1
138/120 34.6/34.3 138/280 34.6/35.7
69/61 35.7/35.5 69/138 35.7/36.6
276/215 17.8/17.5 276/50 17.8/15.6
207/159 18.2/17.9 207/33 18.2/16.1
138/104 18.7/18.4 138/18 18.7/16.7
69/61 19.5/19.3 69/49 19.5/17.6
257/218 33.4/33.2 259/205 33.4/34.7
184/147 33.9/33.7 188/136 33.9/35.1
116/76 34.6/34.3 126/70 34.6/35.7
55/38 35.7/35.5 58/33 35.7/36.6
256/212 17.8/17.5 253/49 17.8/15.6
184/156 18.2/17.9 181/33 18.2/16.1
116/100 18.7/18.4 111/18 18.7/16.7
54/56 19.5/19.3 56/4 19.5/17.6



Fig. 2. Scatterplot of attributable hospitalizations and relative risk using temperature distribution for entire county and temperature distribution by climate zone.
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discrepancies in the number of attributable hospitalizations when com-
paring zone-specific to county-wide temperature distributions. These
results indicate that adopting a single criterion for an entire region
193
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substantially improve early heatwarning systemswithin large adminis-
trative jurisdictions.

Our results show that the health burden of ambient temperature dif-
fers vastly bymeasurement used for heatwaves or extreme heat events.
Thisfinding is consistentwith previous research showing that heteroge-
neous heat wave definitions can result in substantial differences in esti-
mated health outcomes (Tong et al., 2010; Kent et al., 2013; Anderson
and Bell, 2009). For example, Tong et al. (2010) compared ten heat
wave definitions to determine which is the best predictor of health im-
pacts in Brisbane, Australia, and found that small changes in heat wave
definitions could lead to substantial changed in health impacts (Tong
et al., 2010). Kent et al. (2013) conducted a similar analysis in Alabama,
USA and revealed that relative heat wave index measures had stronger
associations with preterm births and non-accidental deaths (Kent et al.,
2013). The variation in the impacts according to heat wave measure-
ment in our results agrees with the literature on this topic. However,
most of the previous literature aimed to reveal which definition for
heat waves and extreme heat events are the best predictors of health
impacts for an entire city or region (Xu et al., 2016). Campbell et al.
(2019) did consider the heat waves using a relative measure of temper-
ature using historical data for each location and found increases in emer-
gency department hospitalizations in Tasmania, Australia (Campbell
et al., 2019); however they did not calculate these estimateswith overall
measures as a comparison. Our study explores this with further depth to
understand how these definitions can differ within a city or county, and
understand the extent of the misclassification occurring between cli-
matic zones when using one regional temperature distribution. Instead
of testing various definitions on a regional level, our results can be
used to inform the most appropriate heat wave and extreme heat defi-
nition at the local level.

The previous 2018 study found coastal residents were more suscep-
tible to heat-related hospitalizations than inland residents (Guirguis
et al., 2018). Also, the coastal region saw health impacts at lower tem-
peratures thresholds compared to inland locations. These results align
with ourfindings that persons living in the coastal regionwere observed
to experience heat-related illness at lower temperature than the inland
and desert climate zones.

Our results show that using the same temperature threshold for the
all zones of the SanDiego County fails to reveal the range of the impacts.
These definitionsmay capture distinct types of heat waves, or meteoro-
logical events, which may present differently over the various sub-
regions of the county. This has been documented in summer, when spe-
cific meteorologically distinct events are expressed in different climate
regions, such as the coast or desert (Clemesha et al., 2018). For example,
thehigher health impact of heatwaves and extremeheat events defined
by maximum temperature in zone 1 may be because of the Santa Ana
winds that are associated with hot temperatures along the coast
(Guzman-Morales et al., 2016). Utilizing one county level heat wave
definition fails to consider the risks of these unique heat wave expres-
sions which differ by zones within the county.

There aremany examples of heatwaves that only express themselves
over the coast or deserts of Southern California (Austin, 2011). The esti-
mated number of patients admitted for heat-related illness attributable
to heat waves showed vastly different results when climate zones were
considered individually rather thanwhen the heat waveweremeasured
based on the temperature distribution for the entire county. The average
county estimations either drastically overestimated or underestimated
hospital admissions, except for zone 2 — the transitional zone between
coast and desert. Heat wave definitions that incorporate geographical
and weather/climate criteria should be contextualized to a local scale
to improve the accuracy of heat warning systems and hospital prepared-
ness. This has long been recognized in San Diego County, which moti-
vated an improved warning system that accounts for local variation in
climatology and provides tiered heat alerts for different levels of popula-
tion vulnerability (NWS, https://www.wrh.noaa.gov/wrh/heatrisk/?
wfo=sgx).
The activation of early warning systems is often based on identified
thresholds and therefore is based on binary criteria. However, our re-
sults show that these should be built around local epidemiologic evi-
dence and in collaboration with emergency management stakeholders
(McGregor et al., 2015). This approach should by nature and needs to
be complementary to long-term measures such as greening and other
climate adaptation strategies (Chun and Guldmann, 2018; Stone et al.,
2013). Yet, it also possible to consider graduated alert systemswith dif-
ferent levels associated with different actions such as the one imple-
mented in the heat alert system in Montreal, Canada (Price et al.,
2013) or in air quality indexes implemented in the United States (US)
(see https://airnow.gov/index.cfm?action=aqibasics.aqi).

Subsequently, an additional important finding of this paper is the
variation revealed when considering scales for the contrast measures.
These results demonstrate distinctions in the health effects when
using an attributable risk compared to relative risk. Themajority of pre-
vious literature comparing heat wave definitions relies on relative risk
to estimate the health impacts. However, a heat wave definition that
best mitigates its health impacts on a population may not correspond
to the highest relative risk as this measure does not take into account
the occurrence of the heat waves. For example, although an extreme
heat wave may have a stronger health burden, by occurring less fre-
quently, the impact may be less severe than for a heat wave that is ex-
perienced more regularly.

Additionally, we show that heat wave and extreme heat definitions
based onmaximum temperaturemeasurements resulted in the greatest
number of attributable heat-related hospital admissions. Yet, while heat
waves based on the minimum temperature metric contributed the least
amount of attributable hospitalizations, the associated burden in zones 2
and 3 was significant. This highlights that it may be beneficial in some
cases to consider a combination of criteria using both minimum and
maximum metrics when planning an early heat warning system. High
minimum temperatures can reflect high nighttime temperatures which
often reflect high humidity events, which have been shown to be partic-
ularly harmful for health (Gershunov et al., 2009).

A limitation of this study was that we focused only on heat waves
occurring during summermonths (May through October). Yet, extreme
heat events with health impacts can occur throughout the year in
Southern California, (Kalkstein et al., 2018) and a further analysis
could be conducted focusing on off-summer heat events, as well as spe-
cific meteorological types of heat waves. Additionally, humidity, which
has been shown to be associatedwith health effects and heatwaveswas
not included as a covariate, but elevated minimum temperature has
been shown to be correlated with high humidity events (Gershunov
et al., 2009). In addition, investigating a smaller subset of zones led to
small sample sizes, which reduced the power and precision of the rela-
tive and attributable health risks. Also, we have no data on population
mobility across climate zones in San Diego; we assumed that patients
visit a hospital within their climate zone. Lastly, although it was beyond
the scope of this study, we hope to explore the potential harvesting ef-
fect for various definitions of heat waves and extreme heat in future
work.

While we identified variation in the burden associated with many
heatwave definitions, wewere not able to assess the drivers of such var-
iations. Such drivers could for example include demographics, socio-
economic status andbehavioral and contextual factors, such as the social
isolation, chronic illness, and outdoor occupations. These factors have
been shown to increase vulnerability to heat effects (Benmarhnia
et al., 2015; Gronlund, 2014). Understanding spatial variation of these
vulnerabilities may have important implications for refining heat warn-
ing systems' specific actions to reduce heat risk.

This study used hospital discharge data in San Diego County to show
howvarious heatwave events can predict a significantly different health
burden when considering locally derived heat wave thresholds. The re-
sults demonstrate that variations in heat event criteria, including cli-
mate zone, temperatures, and duration, produce significantly different

https://www.wrh.noaa.gov/wrh/heatrisk/?wfo=sgx
https://www.wrh.noaa.gov/wrh/heatrisk/?wfo=sgx
https://airnow.gov/index.cfm?action=aqibasics.aqi
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risk estimates. Thiswork highlights the importance of selecting themost
appropriate risk measures when investigating the effects of heat waves
on public health. Utilizing a county-level threshold will not capture the
full extent of these health impacts and therefore will not be adequate
inmitigating these effects. Activating heat warning systems based on lo-
cally defined thresholds that are selected based on their prediction of
the attributable risk promotes greater accuracy in informing these sys-
tems, and ultimately greater alleviation of the health impacts of heat.
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